Keywords:

Abstract:

An Exploration of the ‘It’ in ‘It Depends’:

Generative versus Interpretive Model-Driven Development

Michiel Overeem! and Slinger Jansen?

1DepartmentArchitecture and Innovation, AFAS Software, Leusden, The Netherlands

2Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands

m.overeem@afas.nl, slinger.jansen@uu.nl

Model-Driven Development, Model-Driven Architecture, Software Architecture, Code Generation, Run-Time
Model Interpretation, Decision Support Making

Software producing organizations are increasingly using model driven development platforms to improve soft-
ware quality and developer productivity. Software architects, however, need to decide whether the platform
generates code (that might be compiled) or if the model is immediately interpreted by an interpreter embedded
in the application. Presently, there is no clear guidance that enables architects to decide for code generation,
interpretation, or a hybrid approach. Although the approaches are functionally equivalent, they have different
quality characteristics. An exploration is done on the quality characteristics of code generation versus inter-
pretation as a model execution approach. A literature study is done to gather quantitative data on the quality
characteristics of the two model execution approaches. The results of this study are matched with observa-
tions made during a case study. With the resulting support method architects of model driven development

platforms can avoid costly wrong choices in the development of a model driven development platform.

1 INTRODUCTION

Software producing organizations (SPOs) are us-
ing model driven development (MDD) platforms to
improve software quality and developer productivity
as described by Diaz et al. (2014). The promise of
MDD is an increase of velocity for a development
team, tooling for non-technical employees to spec-
ify functionality and intent, and provable correctness
of an application. According to Hailpern and Tarr
(2006) this is achieved by raising the abstraction level
at which developers work. However, implementing
MDD in a SPO is not trivial. A model that is trans-
formed into running software sounds as a major step
forward, but how and when is this transformation
done? Some implementations use code generation,
others use run-time interpretation, but which one is
better? In line with Voelter (2009), who calls this
transformation the execution of the model, this paper
uses the term model execution approach: the model is
executed to obtain the software that conforms to the
model.

Different authors such as Batouta et al. (2015),
Smolik and Vitkovsky (2012), Tankovic (unknown),

A This is an AMUSE paper. See amuse-project.org for
more information.

and Voelter (2009) have described possible model ex-
ecution approaches and how they should be imple-
mented. It is clear that trade-offs have to be made. No
one should expect that the model execution approach
for one project is suitable for another project, without
exploring the trade-offs first. Developers have to find
the balance, and the answer remains “it depends”.

One can be tempted to regard this as a mere im-
plementation detail and misuse quotes like “any good
software engineer will tell you that a compiler and
an interpreter are interchangeable”! and “interpreters
and generators are functionally equivalent” as stated
by Stahl et al. (2006). However, that would miss the
point of this discussion: the different model execu-
tion approaches will give the same functionality, but
not with the same level of quality. Although Stahl
et al. (2006) give a rule of thumb by saying that code
generation is more useful for structural aspects, while
interpretation is better suited for behavioral aspects,
this paper shows that there is more to say about the de-
sign of a fitting model execution approach. The chal-
lenge for SPOs is to implement the model execution
approach in such a manner that their required qual-

ITim Berners-Lee in an interview with editor Brian
Runciman - http://www.bcs.org/content/ConWebDoc/3337

https://amuse-project.org

ity attributes of the system are satisfied with the least
amount of effort. Although the model execution ap-
proaches are functionally equivalent and an end-user
will not see the difference the quality of the system
depends on this part as well. Interpretation for in-
stance can negatively affect the run-time performance
as explained in Section 3. Code generation on the
other hand gives ample opportunity for optimization
of the resulting application.

This paper deals with the foundational question of
whether to generate running software or interpret the
model at run-time. The context of this research is a
large scale MDD platform in development at AFAS
Software, a SPO in The Netherlands. The model ex-
ecution approach is part of this platform, and the de-
sign of this approach is the motive of this research.
The decision-making process is explored by answer-
ing two questions: How does the choice between gen-
erative and interpretive MDD influence the quality of
a MDD platform? and How can SPOs design the most
fitting model execution approach based on the quality
characteristics for generative and interpretive MDD ?
By answering these two questions, the trade-offs are
made explicit, resulting in decision support for the de-
sign of a model execution approach.

Section 2 gives a brief overview of different model
execution approaches, and summarizes related work.
The first question is answered in Section 3 by per-
forming a literature study on the advantages and
disadvantages of the generative and interpretive ap-
proach, and relating them to the Software Product
Quality Model from ISO/IEC 25010 (2011). Sec-
tion 4 answers the second question by observing the
decision-making process. The research is evaluated
and discussed in Sections 5 and 6.

2 RELATED WORK

The first and maybe best-known approach is code
generation, a strategy in which a model is parsed, in-
terpreted, and transformed into running software by
generating source code. This approach is formalized
outside of MDD in Generative Programming and de-
fined by Czarnecki and Eisenecker (2000): “Genera-
tive programming is a software engineering paradigm
based on modeling software system facilities such
that a highly customized and optimized intermedi-
ate or end-product can be automatically manufactured
on demand.” Generative programming is more broad
than MDD: the generation does not need to happen
based on an model, but can also be done based on a
configuration of components. Combining generative
programming with MDD results in generative MDD.

Although the output could be manually changed, this
paper only regards full code generation: no manual
changes are made to the resulting source code be-
tween generation and shipping the application. As
Kelly and Tolvanen (2008) point out this does not
mean that all code should be generated, an approach
that combines generated code with a framework or
base library is still a full code generation approach.

The other well-known approach is model interpre-
tation or interpretive MDD. This strategy also parses
and interprets the model; however, in this approach
this is done at run-time. There is no source code or
application generated and deployed, but instead, the
model is shipped as meta-data for the application. In
the same manner as the generation approach, this pa-
per only regards interpretation without further man-
ual coding. Interpretation which needs manual coding
would not make sense, as model execution happens at
run-time there would be no time for intervention.

Although many unique hybrid approaches could
be identified, three general groups of hybrid ap-
proaches are explained. Because of the nature of the
hybrid approach, a mix of different approaches, it is
not possible to give an exhaustive overview. The first
hybrid approach is simplification: a model with a high
abstraction level is transformed into a model with a
lower level of abstraction. The generator simplifies
the original model and the resulting model, of a lower
abstraction level, is interpreted at run-time. This is
very similar to languages that compile into an inter-
mediate language, that in return is interpreted in a
runtime environment. An example of this approach
is described by Meijler et al. (2010). They generate
Java code, but use a customized class loader to dy-
namically load classes. The customized class loaders
acts as an interpreter while the generated Java code is
the intermediate language. The approach of a cus-
tomized class loader looks similar to the Adaptive
Object-Model Architecture described by Yoder and
Johnson (2002) and applied by Hen-Tov et al. (2008).

The second group of hybrid approaches is a strat-
egy that combines different approaches to different
parts of the model and/or application. In this approach
code is generated for certain parts of the system, while
other parts of the application are built using inter-
preters. The separation could also be done from the
model perspective: generate code for the mature (and
thus more stable) parts of the model while parts that
are more dynamic can be interpreted.

The third hybrid approach is found in program-
ming language research: while Jones et al. (1993)
and Rohou et al. (2015) show that interpretation is
slower, partial evaluation opens up new possibilities
in implementing a model execution strategy. A com-

Inostroza and Van Der Storm, 2015

‘ Voclter and Visser, 2011 ‘

Varro et al, 2012 ‘ Zhu, 2014 ‘ Cleenewerck, 2007 ‘

Diaz etal., 2014 ‘ ‘ Fabry et al, 2015 ‘

Brady and Hammond, 2010 ‘ J Cook et al., 2008 ‘ ‘ Batouta et al., 2015 ‘

Gaouar et al., 2015 ‘

Jorges, 2013

Guana and Stroulia, 2015 ‘

Pa—

3

Deursen et al., 2000 -

—

%

Mennik et al., 2005

‘ Stahl et al., 2006 ‘

Czamecki and Eisenecker, 2000 ’—

Ousterhout, 1998 ‘ ‘ Thibault et al., 1999 ‘

‘ Consel and Marlet, 1998 ‘ ‘ Cordy, 2004 ‘ Meijler et al., 2010 Schramm et al., 2010

— .\

-

‘ Romer et al., 1996 ’- ‘ Ertl and Gregg, 2003 ‘ ‘ Gregg and Ertl, 2004 ‘

Thibault and Consel, 1997 ‘

Jones ctal, 1993 ‘

Richle et al., 2001

Klint, 1981

Figure 1: A dependency graph of the literature found in the review. Every arrow represents a citation. The dark blue boxes

mark the start set for the literature study.

pany that started with an interpretation approach, is
able to specialize this interpreter for certain models.
The evaluator transforms the generic interpreter into
a more specialized interpreter for a certain range of
models. Cook et al. (2009) and Shali and Cook
(2011) demonstrate that with this approach the inter-
preter could even be translated into a specialized ap-
plication.

More research is done on model execution ap-
proaches in MDD, however, none of them answer the
questions asked in this paper. Batouta et al. (2015)
have performed a multi-criteria analysis on the differ-
ent approaches to aid the decision-making. However,
they do make a decisive statement about which ap-
proach is better without giving support for decision-
making in different contexts. Fabry et al. (2015)
touch on a number of advantages regarding the dif-
ferent model execution approaches, but do this with-
out giving any decision-making support. While Zhu
et al. (2005) does research the decision-making, he
does this for other architectural decisions than the
specific model execution approach. Guana and Strou-
lia (2015) research how developers interact with code
generators, but do not compare this with interpreters.

Applying different decision-making methods to
the design of software and their architecture is not a
new approach. Examples are Capilla et al. (2009),
Jansen and Bosch (2005), and Svahnberg et al.
(2003). All of them research how decision-making
methods can support the design of software. None of
them apply this approach to the architecture of MDD
in particular, but only look at architectural design in
general.

3 LITERATURE STUDY

How the two model execution approaches, code
generation and interpretation, compare to each other

is studied by doing a literature review following the
snowballing approach as described by Wohlin (2014).
The goal of the study is to identify advantages and dis-
advantages of generation and interpretation that are
claimed in existing research. There are two reasons
for using the snowballing strategy. First of all the re-
search area to be covered is broad: MDD, DSL engi-
neering, and compiler design all cover aspects of this
discussion. The second reason is that the papers often
do not criticize the approaches explicitly, advantages
or disadvantages are often buried in descriptions of
implementations. These two reasons, the broad re-
search area and the indirect comments, make it hard
to search for literature. The snowballing strategy de-
pends on the citations that authors add when giving
reasons for their chosen approach. Therefore, the start
set consists of papers that for instance propose a spe-
cific implementation or give a summary of best prac-
tices.

The start set for the review was created by an
informal exploratory search using Google. Search
terms for this search were “interpretation versus code
generation” as well as a number of variations. The
results were reviewed and explored for links to sci-
entific research. The resulting literature from the dif-
ferent research fields was taken as starting point: Van
Deursen et al. (2000), Meijler et al. (2010), Mernik
et al. (2005), Tankovi¢ et al. (2012), and Voelter
(2009). Both backward and forward references were
followed to expand this set. Papers were included
when advantages or disadvantages were mentioned in
relation to a model execution approach. This strategy
led to 32 papers and books that were included. The
citation graph is shown in Figure 1.

The classification of the advantages and disad-
vantages is done by using the characteristics for
software product quality found in ISO/IEC 25010
(2011). The quality attributes form the criteria of
the multi-criteria decision support method that is

described in this paper. The product quality model as
defined by ISO consists of eight categories (with 31
sub-characteristics).

In the 32 papers, no evidence was found for a dif-
ference in quality fulfillment in relation to three out of
eight categories. It was expected that those three cat-
egories would not have any evidence of quality differ-
ence. Categories functional suitability and usability
describe how users interact with the software and how
the software fulfills their requirements, and to repeat
the quote from Stahl et al. (2006): code generation
and model interpretation are functionally equivalent.
The last category, reliability, deals with behavior in
relation to the environment of the software system.

For the remaining categories data was found. The
category performance efficiency describes how to
system utilizes resources, responds to requests, and
meets the capacity requirements. The operability and
co-existence of a system are described in compatibil-
ity. Confidentially, integrity, authentication, and re-
lated aspects are described in security. Maintainabil-
ity covers the effectiveness and efficiency of modifi-
cations to the system. Last, portability describes the
transfer of the system to a new platform. Mentions
of an advantage or disadvantage were mapped onto
sub-characteristics of these categories.

Table 1 shows the results of the study: every men-
tion of an advantage or disadvantage results in either
a G (when the author prefers generation over interpre-
tation) or an / (when the author prefers the opposite)
in the corresponding cell. When the author has no
preference for generation over interpretation, but does
give advantages for both, the corresponding cell con-
tains G I. The number of papers that prefer generation
over interpretation or vice versa are used to calculate
the preference in a percentage of the two alternatives
with respect to every quality attribute. The resulting
ranks are used in Section 4 to design the most fitting
approach.

The evidence found 1is summarized per
sub-characteristic. ~ First the name of the sub-
characteristic, the category under which the sub-
characteristic falls between parentheses, and a short
summary of the evidence that was found.

Time behavior (Performance efficiency) - This sub-
characteristic is a special one, as according to ISO
it deals with the response and processing time of the
system. Within a MDD platform there are two differ-
ent response times that are important: the run-time re-
sponse of the application and the build-time response
of the platform. Build-time response is defined as
being the turnaround time of changing the model

and updating the application to correspond with the
model. The literature shows that there is a big differ-
ence between those two kinds of response times when
comparing code generation with model interpretation.
With respect to the run-time performance of the ap-
plication a big preference for generation is observed,
while for build-time performance there is a big pref-
erence for interpretation. Because of this difference
the time behavior sub-characteristic is split out in two
separate characteristics.

The trade-off between interpretation and genera-
tion with respect to run-time performance is a fre-
quently made comment. Twenty-two papers list this
trade-off and make comments about it: three give
no preference, and the others prefer a generative ap-
proach. The general sentiment is that generators can
do upfront analysis resulting in more efficient code,
while interpreters add overhead and thus are slower.
In an early paper Klint (1981) went against this senti-
ment and remarked that this advantage will diminish
over time because of the advent in hardware. Ertl and
Gregg (2003) and Romer et al. (1996) indeed show
in their research that there are no reasons why inter-
preters are slow by definition.

Although the generative approach often results
in better run-time performance, the lower build
times are an advantage of the interpretive approach.
The turnaround time between model changes and
ready-for-use software is a huge advantage, enabling
better prototyping, according to Consel and Marlet
(1998), and Riehle et al. (2001) among many others.

Resource utilization (Performance efficiency) -
Not only are generators producing more performant
code, they can also optimize for other resources
according to Meijler et al. (2010). This is a much
needed advantage in for instance embedded systems
or other resource-constrained environments like
games. Gregg and Ertl (2004) state that interpreters
often require less memory, but they do compete with
other parts of the application for resources. Although
generators maybe use more memory, they do not have
to compete with the running application, they can run
on different hardware. Meijler et al. (2010) point out
that with regards to data storage in the application
an interpretive approach often has to choose for a
less optimal schema. The data itself conforms to a
schema depending on the model, which can change
at run-time. The storage often can not respond to that
change and thus has to be flexible enough.

Co-existence (Compatibility) - Only two papers
make comments on the influence of the different
approaches on co-existence. Jorges (2013) points

Table 1: The results of the literature review and basis for the ranking of the two approaches. G corresponds with a preference
for code generation over interpretation. / identifies where a paper shows a preference for interpretation over generation. G [
shows where papers did not show a clear preference, but did give advantages or disadvantages.

~| Build-time behavior
Co-existence

Q| Resource utilization

Interoperability
Q| Confidentiality
Modularity
Analysability
Q| Adaptability
Q| Installability

Batouta et al. (2015)

Brady and Hammond (2010)

Cleenewerck (2007)

Consel and Marlet (1998)

Cook et al. (2008)

Cordy (2004)

Czarnecki and Eisenecker (2000)

Diaz et al. (2014)

Ertl and Gregg (2003)

Fabry et al. (2015)

Gaouar et al. (2015)

Gregg and Ertl (2004)

Guana and Stroulia (2015)

Inostroza and Van Der Storm (2015)

Jones et al. (1993)

Jorges (2013) I 1

Klint (1981) GI G

Meijler et al. (2010) G I G

Mernik et al. (2005)

Ousterhout (1998) G I

Riehle et al. (2001) I

Romer et al. (1996) GI

Schramm et al. (2010) I

Stahl et al. (2006) 1
1
1

—

—

ceofa0a Qo 00| Runtime behavior

Q

Tankovic (unknown)
Tankovic et al. (2012)
Thibault et al. (1999)
Thibault and Consel (1997)
Varr6 et al. (2012)

Voelter (2009)

Voelter and Visser (2011)
Zhu (2014)

aaaa aaaQ

G

— —| Modifiability
Testability

—
—
—

—_——Q
=

—

0o o
o
-0

Qoo

G
G

aQaQ~

% in favor generation

I

I

1

0 87.5 0
% in favor interpretation Of

0 12.5 100

— o0
SR

out that the late binding of the interpretive approach
makes it a good candidate for multi-tenant appli-
cations: the same application instance can be used
for all tenants. Gaouar et al. (2015) share their
experiences on making dynamic user interfaces and
point out how the interpretive approach enabled them
to use the platform native elements.

Interoperability (Compatibility) - Because inter-
preters have access to the dynamic context of the
running application they can make decisions based
on that context. This advantage is claimed by Fabry
et al. (2015), Ousterhout (1998), and Varré et al.
(2012). The interoperability of interpreters with other
parts of the application is thus better.

Confidentiality (Security) - Models can be seen
as intellectual property according to Tankovic (un-
known) and Tankovi¢ et al. (2012), and the model
is exposed to the application in an interpretive
approach. With code generation the models are never
shipped, as the modeling solution is separated from
the application.

Modularity (Maintainability) - In his thesis Clee-

100 0 80 77.8 85

0 100 20 222 15 37.5 57.1

62.5 429

£
(==

newerck (2007) argues that generators have more
room for modularization, because an interpreter
at some point produces a value which cannot be
changed anymore. He is however the only one
claiming this preference, different authors such as
Inostroza and Van Der Storm (2015) and Consel and
Marlet (1998) propose solutions for modularization
within interpreters.

Analysability (Maintainability) - Generators
translate the model into a separate language, but the
semantics have to be translated as well. This is hard
to prove correct, according to Guana and Stroulia
(2015). Interpreters on the other hand can play the
role of a reference implementation (according to
Jorges (2013)), making the semantics of a model
clear. Voelter (2009) and Voelter and Visser (2011)
claim an advantage for generation: debugging a
generated application is easier, which benefits the
analysability.

Modifiability (Maintainability) - Cook et al.
(2008) and Diaz et al. (2014), among others, claim
that interpreters are easier to write, and thus are
easier to modify. In the experience of Cordy (2004)

the heavy-weight process of the compiler made it
hard to modify. Cleenewerck (2007) and Voelter
and Visser (2011) claim that developers have more
freedom building generators and thus can make better
maintainable solutions.

Testability (Maintainability) - Interpreters can
easily be embedded in a test framework, where the
functionality can be tested. The reduced turnaround
time for interpreters also make them easier to test.
Generators are effectively a function from model to
code, which results in an indirection in the testing
framework. The easiest way to determine the correct-
ness is by running the generated code, asserting if the
correct code is generated would be cumbersome and
error prone. Voelter (2009) and Voelter and Visser
(2011) give preference to generation when it comes to
debugging, because only one aspect is being looked
at.

Adaptability (Portability) - Meijler et al. (2010),
Batouta et al. (2015), and Voelter (2009) see the
advantage of code generation in adaptability: only
part of the generator needs to be adapted, which is
less work. Because of the separation between gen-
erator environment and application environment it is
possible to evolve them in different steps. Tankovié
et al. (2012) and Gregg and Ertl (2004) see no
problem in porting an interpreter to a new platform
by using platform independent technologies. When
one wants to move to a different target platform,
worst case scenario is that the whole interpreter
needs be rewritten, which some regard as being easy,
while with the generative approach only part of the
generator needs to be adapted, which can be less
work.

Installability (Portability) - A clear advantage is
given to code generation by Meijler et al. (2010),
Cook et al. (2008), Batouta et al. (2015), and Voel-
ter (2009), because the generation can target any plat-
form. By using an interpretative approach it is less
needed to re-install the application, because only the
model needs to be updated. This advantage is pointed
out by Tankovi¢ et al. (2012) and Mernik et al.
(2005).

4 CASE STUDY

The quality characteristics and their comparisons
can be used to design the most fitting approach for a
specific software product or software component. In
order to make usage of them, teams need to prioritize

the characteristics, i.e., they have to determine which
are more important than others. This section summa-
rizes observations made at a large software company
in The Netherlands. AFAS Software, a Dutch ven-
dor of Enterprise Resource Planning (ERP) software.
The NEXT version of AFAS’ ERP software is com-
pletely model-driven, cloud-based and tailored for a
particular enterprise, based on an ontological model
of that enterprise. The ontological enterprise model
(OEM, as described Schunselaar et al. (2016)) will
be expressive enough to fully describe the real-world
enterprise of virtually any customer.

When a priority is assigned to the quality charac-
teristics, (this is done with percentages, adding up to
a total of 100%), the total score of both code gener-
ation and model interpretation can be calculated with
the following formulas:

j j
Y PG; and) PI;
i=1 i=1

For every quality characteristic j the priority is ap-
plied to either the code generation or interpretation
preference. These values are summarized to end up
with the total score of code generation and model in-
terpretation.

Calculating the priorities of the different quality
characteristics can be done in different ways, and
this section describes two of them. In this case study
observations are taken from two time-frames in the
development process. Although the software devel-
opment is a multi-year project and is still ongoing,
these two time-frames represent two discussions on
designing model execution approaches. The first
time-frame focused on building an initial working
version that could be used for exploration and vali-
dation. It is labeled the Architecture Design Phase
as it focused on the initial architecture of the MDD
platform. The second phase builds on top of the first
phase, making the platform better suited for realistic
deployment scenarios. Both phases are described
in terms of the decisions that led the development,
along with the requirements in terms of quality
characteristics. Decisions that gave direction to the
design are labeled with a D, and they are summarized
in Table 2.

While it is observed that some of the decisions can
be seen as requirements, it are actually the decisions
following from corresponding requirements. For in-
stance decision D1 states that the decision is made to
develop a MDD platform based on an OEM, follow-
ing from the requirement to have a model with a high
level of abstraction, not describing technology or soft-
ware but organizations.

Table 2: Summary of the decisions.

Architecture Design Phase

D1 A MDD platform based on an OEM

D2 A SaaS delivery model for the application
D3 Use multi-tenancy to gain resource sharing
Deployment Design Phase

D4 Enable customers to customize the model
D5 Run the application on the .NET runtime
D6 Deploy as a distributed application

D7 Re-design the model execution for messages

4.1 Architecture Design Phase

Phase one focused on three key decisions, the first be-
ing the type of model used for the platform (D1). The
foundational vision is that the model describes an or-
ganization, and not a software system. This results in
the model being an OEM as described by Schunselaar
et al. (2016). By definition this model has a high ab-
straction level, and lacks the details that are involved
in creating software, details that are instead present
in the software (generator or interpreter) transforming
the model. The second decision was that the result-
ing application is delivered through the Software-as-
a-Service (SaaS) model (D2). Within a SaaS model
SPOs are paid for delivering a service, and it is im-
portant that this delivery is done in a cost effective
way. Multi-tenancy is a manner for SPOs to be cost
effective as stated in the definition of Kabbedijk et al.
(2015). Therefore, the last decision followed natu-
rally from the second: the platform would be multi-
tenant (D3), although it was not yet decided what
form of multi-tenancy. These three decisions gave fo-
cus for the development that was done in this time-
frame. The SaaS model, along with the multi-tenancy
resulted in a priority for the quality characteristics re-
source utilization and run-time behavior. The quality
characteristic confidentially has no priority, because
even if the model is distributed along with the soft-
ware it will stay confidential in the SaaS model. The
resources of the platform are shared among the cus-
tomers, and to be cost effective, this sharing has to be
optimal. The platform with a different model per cus-
tomer also demanded confidence, so the development
team gave priority to festability.

Although the data from this paper was not yet
available, the decisions and requirements are in hind-
sight translated into a prioritization of the quality at-
tributes as shown in Table 3. These weights are not
used to validate the design against the knowledge
from Table 1, because this study was done after this
phase. They serve as an illustration of how to the
data from the literature study can be used. Three out
of four requirements show a clear preference for the

code generation approach, leading to a 74% prefer-
ence for code generation. Although according to the
literature study testability and analysability suffer in
the generation approach, the team was able to solve
those with satisfaction. In this case, the experience
confirmed the statements of Voelter (2009) and Voel-
ter and Visser (2011) that code generation is easier to
implement and debug. Phase one was indeed devel-
opment by means of a full code generation approach.

Table 3: Summary of the prioritization of quality character-
istics for phase one. Columns G and / show the preferences
for code generation and model interpretation.
| Priority | G I
Run-time behavior | 0.35 0.88 0.12
Resource utilization | 0.35 0.875 0.125

Testability 0.15 0.60 0.40
Analysability 0.15 0.222 0.778
Preference \ [0.738 0.262

4.2 Deployment Design Phase

Phase two took place some time after the first, and
its goal was a version of the platform that would deal
with the challenges of being a distributed SaaS so-
lution that allows customers to maintain their own
model. The decisions from phase one were not re-
jected, but new decisions were added to the list. The
first was the possibility for customers to maintain
and customize their own model (D4). This function-
ality requires an efficient upgrade mechanism, one
which is not disruptive for the users. The team also
decided on running the software on the .NET run-
time (DS), a platform that does not support dynamic
software updating, or other means of online upgrad-
ing. Dynamic software updating, or online upgrading,
is a solution for updating software processes without
stopping them first, a solution that results in an ef-
ficient upgrade mechanism. The quality characteris-
tic build-time behavior became more important, be-
cause customers maintain their own model expecting
near instant model execution, but the chosen platform
(.NET) does not support updates without restarting
the processes. The last decision was an extension of
D2, the application should have a distributed nature
to give robustness and optimal resource sharing (D6).
The attributes adaptability and modifiability gained
importance, because of the size of the platform and
its source code.

To set boundaries in this phase, the model ex-
ecution approach of a specific component was re-
designed. The application has a distributed nature,
and messages are used to pass information between

the different components. The re-design of the model
execution approach for these messages was the objec-
tive for this phase (D7).

In this phase, the AHP method described by Saaty
(1990) was used to rank the complete list of twelve
quality characteristics. Falessi et al. (2011) conclude
that the AHP method is helpful in protecting against
two difficulties that are relevant for this study. The
first is a too coarse grained indication of the solution:
as stated before there can be much detail in the model
execution approach and the decision support method
should support this. The second difficulty is that there
are many quality attributes that need to be prioritized,
and many attributes have small and subtle differences.

Table 4 shows the result of ranking the character-
istics along with the total score for both code gener-
ation and model interpretation. The ranking is a re-
sult from the pairwise ranking of the characteristics
in Table 1: every pair was ranked on relative impor-
tance. The attributes build-time behavior, adaptabil-
ity, and modifiability have high priority (28%, 15.5%,
and 15% respectively), based on the decisions made.
Compared to phase one, the top three is completely
different (see Table 3), and the preference is also
flipped in favor of interpretation with 69%. The re-
design was done by implementing a model simplifica-
tion execution approach: the OEM is simplified into
simple message contract definitions by the generator.
Did run-time behavior, resource utilization, testabil-
ity, and analysability became less important? No, but
the decisions made in phase two favored other char-
acteristics, such as build-time behavior, and initial
tests showed that the simplification approach would
not lead to an unacceptable decrease of the run-time
performance or an unacceptable increase of the re-
source utilization. The team was able to satisfy the
requirements for run-time behavior, resource utiliza-
tion, testability, and analysability with the simplifica-
tion approach, while build-time behavior was difficult
to satisfy with the generative approach combined with
the .NET runtime.

4.3 Evaluating the Decisions

The decisions that were observed during the design
of the model execution approach are summarized in
Table 2. As the result of the result of choices that
were made in the design of the platform, these deci-
sions set the boundaries and requirements for the on-
going design. The observed decisions are categorized
in three areas meta-model, architecture, and platform
and together form the context of the model execution
approaches within a MDD platform.

meta-model - Decisions D1: OEM and D4: Cus-

Table 4: Summary of the prioritization of quality character-
istics for phase two. Columns G and I show the preferences
for code generation and model interpretation.

| Priority | G I

Run-time behavior 0.059 0.88 0.12
Build-time behavior | 0.278 0.00 1.00
Resource utilization | 0.098 0.875 0.125
Co-existence 0.045 0.00 1.00
Interoperability 0.012 0.00 1.00
Confidentiality 0.012 1.00 0.00
Modularity 0.062 0.20 0.80
Analysability 0.023 0.222 0.778
Modifiability 0.150 0.15 0.85
Testability 0.085 0.60 040
Adaptability 0.155 0.375 0.625
Installability 0.021 0.571 0.429
Preference \ | 0.310 0.690

tomized model shows how the meta-model and its
features influence the design of the best fitting strat-
egy for model execution. A meta-model with a high
level of abstraction, results in a more complex model
execution, because the high level of abstraction needs
to be transformed into a running application. This
complex model execution requires more resources
and takes more time, therefore code generation, or
model simplification is preferred. By implementing
a transformation outside of the application (by either
generating code, or simplifying the model), the re-
quired resources and processing time do not add any
overhead to the application.

Decision D4:Customize, however, increases the
priority of build-time behavior. Customers that
change the model expect fast turn-around times,
a quality characteristic that is better satisfied with
model interpretation.

architecture - The multi-tenancy level in the ar-
chitecture as defined by Kabbedijk et al. (2015) is
also of influence to the model execution approach
(see D3: Multi-tenancy). If an application instance
level of multi-tenancy is required, code generation
would not make sense unless the platform supports
loading and unloading of source code. An applica-
tion instance level of multi-tenancy uses a single pro-
cess to serve different customers. Different customers
can have different models, and the process should
thus support loading (and unloading for efficient re-
source usage) of different sets of code for different
customers. When multiple customers are served from
the same platform, resource utilization becomes im-
portant. To be cost effective the platform maximizes
resource sharing, but model interpretation adds to the
overall resource usage.

Decisions D6: Distributed application and

D7: Re-design messages show how componentiza-
tion gives engineers the possibility to apply differ-
ent model execution approaches to different compo-
nents in the software system. An application that con-
sists of multiple loosely coupled services can imple-
ment a different model execution approach in every
service. This approach can be extended to applica-
tions that run in a single process, but still consists of
several loosely coupled components. When a compo-
nent, that is tightly coupled to a generated component,
uses model interpretation it might be necessary to re-
generate the first component too, which then reverts
any advantage of the interpretative approach. Exam-
ples for components that could benefit from a gener-
ative approach are those with more business logic or
algorithms, where efficient code is important.

platform - Kelly and Tolvanen (2008) make no
distinction between the architecture, framework, the
operating system, or the runtime environment. The
influence of the architecture and framework described
in the previous area, are different from the oper-
ating system or runtime environment. As decision
D5: .NET platform illustrates, a target platform that
does not support dynamic software updating requires
a different model execution approach to satisfy the
build-time requirements. Not only phase two of the
case study illustrates this, it is also seen in the ap-
proach taken by Meijler et al. (2010) with their cus-
tomized Java class loader and with Czarnecki et al.
(2002) using the extension object pattern.

Deciding for a D2: SaaS delivery model removes
the priority from the characteristics installability and
co-existence: the platform is controlled by the soft-
ware company.

The case study has an illustrative nature, obser-
vations were made during two distinct phases of the
design of an model execution approach. These phases
are characterized by the different decisions that form
the boundaries of the design. By showing two differ-
ent situations, the influences from the context on the
design of a model execution approach are shown. The
two phases are related to the quality characteristics
described in Section 3, and combined with observa-
tions on the decisions that were made in the design of
the MDD platform. The resulting Tables 3 and 4 show
how the different decisions result in different priori-
ties for the two model execution approaches. In the
first phase the decisions led to a preference for code
generation by 74% versus 26% for model interpreta-
tion. Model interpretation received 69% preference
in the second phase, because the shifted requirements
led to different priorities for the quality characteris-
tics.

Table 1 was received with mixed reactions by

the development team. On the one hand the quality
characteristics and the contextual influences guided
the discussions and brainstorms by asking the ques-
tions that the team did not knew they needed to ask.
The percentages, however, were not unanimously ac-
cepted. Questions were asked on the validity, mostly
because the context of specific literature was doubted
to be equal to the case study context. This demon-
strates the importance of context in designing a model
execution approach. It also illustrates the problems in
transferring experience and knowledge from one con-
text to another. It was concluded that the knowledge
presented in Table 1 is informative, but the real value
is in the experience behind the knowledge that trig-
gers the “right” questions.

The case company decided to generate simplified
models that are further interpreted at run-time. This
showed a promising improvement in build-time be-
havior because there is less C# that needs to be gen-
erated and compiled. Interpreting parts of the model
that influence the distributed nature of the application
appears to be more difficult than generating it. With
the results of this exploration, the team will continue
to look out for components that benefit from a simpli-
fication approach, and the model execution approach
will shift more towards a hybrid form of code gener-
ation and model simplification. A pure form of inter-
pretation is considered to add too much overhead to
the run-time performance of the application, because
of the high level of abstraction that the OEM has.

Although this paper does not present a decision-
making method, and it does not relieve SPOs from the
hard work that designing a model execution approach
is, it does make the knowledge and experience of rel-
evant research accessible. By identifying the con-
text of a model execution approach through decisions
made in earlier phases, and by prioritizing the differ-
ent quality attributes, a SPO can get insight in how
well code generation and model interpretation satisfy
the requirements. A result without a significant pref-
erence for either code generation or model interpre-
tation steers the SPO into the design of a hybrid ap-
proach. Based on such a result, an hybrid approach
helps optimizing the software quality by means of a
better fitting model execution approach.

S THREATS TO VALIDITY

The validity of this research is threatened by sev-
eral factors. The construct validity, which is threat-
ened by the fact that some of the researchers where
involved in the object of the study: the observations
made in section 4 could be biased. This threat is ad-

dressed by the fact that this paper is reviewed and
commented on by key team members involved in the
design of the execution approach, making sure that
the observed decisions are correctly described.

The internal validity is threatened because the
quality characteristics and the platform context on the
one hand and the execution approach on the other
hand are difficult to correlate. However, the claims
made in the reviewed literature do converge towards
each other. Although some characteristics lack a sig-
nificant number of references, the authors regard the
claims made in this paper as not being controversial,
but in line with existing research. The data found
in literature to support claims on quality lacks sig-
nificance on a number of characteristics. Further,
much of the literature that was used in composing
the overview uses anecdotal argumentation, as it is
based on the experience of the authors. The claims
that were found in the cited work were frequently not
validated in other cases, and no empirical evidence
for the claims was given. To create a more trustworthy
decision support method, the data presented in Table 1
should be validated by empirical research. Experi-
ments or large case studies should provide more quan-
titative data on the fulfillment of the different quality
characteristics.

The case study done at a single company threat-
ens the external validity. The consequences of the de-
cisions made in the design process are in line with
literature, but additional case studies should further
strengthen the decision support method.

6 CONCLUSION AND FUTURE
WORK

This paper makes two contributions to the re-
search on MDD. The first contribution is the litera-
ture study and the resulting table with the preference
for model execution approach per quality characteris-
tic, described in Section 3. It makes years of experi-
ence and knowledge from many different authors on
designing model execution approaches accessible. A
summary is given with advantages and disadvantages
that others can use in designing a fitting model execu-
tion approach. Although the knowledge was already
available, it was scattered over many papers and hid-
den away as side-notes. With the overview of model
execution approaches and quality criteria the paper
provides SPOs with a method for rapid decision mak-
ing when it comes to the question of interpretation
versus generation.

The second contribution is presented in Section 4:
an illustration of how the quality model for MDD

platforms can be applied in a SPO designing a model
execution approach. By giving priority to the quality
characteristics, a SPO is forced to specify the require-
ments for the approach. The explicit listing of de-
cisions that influence the model execution approach
such as its architecture, platform choices, and its
meta-model show how they interplay with the model
execution approach. Some decisions, such as the ab-
straction level of the model, make a model execu-
tion approach as interpretation less preferable. Deci-
sions such as the choice for a SaaS delivery model in-
crease the need for interoperability and co-existence,
increasing the preference for interpretation. This case
study shows how the different quality characteristics
influence the design, and may even conflict at differ-
ent design phases of a system.

This paper is a first exploration of the design of
a model execution approach. Although there exists
a significant body of knowledge on MDD, including
in-depth showcases of implementations of model exe-
cution approaches, none explores the designing of the
most fitting approach for a given context. The explo-
ration presented in this paper uncovers the need for
more empirical research to validate the claims made
in this paper on quality attributes. For instance the
claim of performance of a generative approach over
an interpretive approach is still widespread, but the
actual overhead in a certain context might be neg-
ligible. Experimentation and large scale case stud-
ies should be conducted to build up evidence for the
presented quality attributes. Not only the quality at-
tributes and their preferences need more evidence.
Studies on the design process should be done to im-
prove the knowledge on how the design of a model
execution approach evolves. Research should be done
to define what the most fitting model execution ap-
proach entails, when is an approach fitting, and when
is it better fitting than another approach.

Many, maybe all, questions in software develop-
ment can be answered with “if depends”, leaving the
questioner puzzled as to what he should do. Although
this paper presents a first exploration and does not
remove the difficulty from the designing and devel-
oping of a MDD platform, it does shed light on the
design process. SPOs can use this exploration to im-
prove their knowledge and steer their design process
towards the most fitting model execution approach.

ACKNOWLEDGEMENTS

This research was supported by the NWO AMUSE
project (628.006.001): a collaboration between Vrije
Universiteit Amsterdam, Utrecht University, and
AFAS Software in the Netherlands. The NEXT Plat-
form is developed and maintained by AFAS Software.
Further more, the authors like to thank Jurgen Vinju,
Tijs van der Storm, and their colleagues for their feed-
back and knowledge early on in the writing of this
paper. Finally we thank the developers of AFAS Soft-
ware for sharing their opinions and giving feedback.

REFERENCES

Batouta, Z. 1., Dehbi, R., Talea, M., and Hajoui, O. (2015).
Multi-criteria Analysis and Advanced Comparative
Study Between Automatic Generation Approaches in
Software Engineering. Journal of Theoretical and Ap-
plied Information Technology, 81(3):609—-620.

Brady, E. C. and Hammond, K. (2010). Scrapping your
inefficient engine. ACM SIGPLAN Notices, 45(9):297.

Capilla, R., Rey, U., Carlos, J., Dueias, J. C., and Madrid,
U. P.D. (2009). The Decision View’s Role in Software
Architecture Practice. Practice, March/April:36-43.

Cleenewerck, T. (2007). Modularizing Language Con-
structs: A Reflective Approach. PhD thesis, Vrije Uni-
versteit Brussel.

Consel, C. and Marlet, R. (1998). Architecturing Soft-
ware Using A Methodology For Language Devel-
opment. Principles Of Declarative Programming,
1490(October):170-194.

Cook, W. R., Delaware, B., Finsterbusch, T., Ibrahim, A.,
and Wiedermann, B. (2008). Model transformation by
partial evaluation of model interpreters. Technical re-
port, Technical Report TR-09-09, UT Austin Depart-
ment of Computer Science.

Cook, W. R., Delaware, B., Finsterbusch, T., Ibrahim, A.,
and Wiedermann, B. (2009). Strategic programming
by model interpretation and partial evaluation. unpub-
lished.

Cordy, J. R. (2004). TXLA language for programming lan-
guage tools and applications. In Proceedings of the
ACM 4th International Workshop on Language De-
scriptions, Tools and Applications, pages 1-27.

Czarnecki, K. and Eisenecker, U. W. (2000). Genera-
tive programming: Methods, Tools, and Applications.
Addison-Wesley Professional.

Czarnecki, K., @sterbye, K., and Vélter, M. (2002). Genera-
tive programming. Object-Oriented Technology, Pro-
ceedings, 2323:135-149.

Diaz, V. G., Valdez, E. R. N., Espada, J. P,, Bustelo, b. C.
P. G., Lovelle, J. M. C., and Marin, C. E. M. (2014).
A brief introduction to model-driven engineering. Tec-
nura, 18(40):127-142.

Ertl, M. A. and Gregg, D. (2003). The structure and perfor-
mance of efficient interpreters. Journal of Instruction-
Level Parallelism, 5:1-25.

Fabry, J., Dinkelaker, T., Noye, J., and Tanter, E. (2015).
A Taxonomy of Domain-Specific Aspect Languages.
ACM Computing Surveys, 47(3):1-44.

Falessi, D., Cantone, G., Kazman, R., and Kruchten, P.
(2011). Decision-making techniques for software ar-
chitecture design. ACM Computing Surveys, 43(4):1—
28.

Gaouar, L., Benamar, A., and Bendimerad, F. T. (2015).
Model Driven Approaches to Cross Platform Mo-
bile Development. Proceedings of the International
Conference on Intelligent Information Processing, Se-
curity and Advanced Communication, pages 19:1—
19:5.

Gregg, D. and Ertl, M. A. (2004). A Language and Tool
for Generating Efficient Virtual Machine Interpreters.
In Domain-Specific Program Generation, pages 196—
215. Springer Berlin Heidelberg.

Guana, V. and Stroulia, E. (2015). How Do Developers
Solve Software-engineering Tasks on Model-based
Code Generators ? An Empirical Study Design. First
International Workshop on Human Factors in Model-
ing, (May):33-38.

Hailpern, B. and Tarr, P. (2006). Model-driven develop-
ment: The good, the bad, and the ugly. IBM Systems
Journal, 45(3):451-461.

Hen-Tov, A., Lorenz, D. H., and Schachter, L. (2008). Mod-
elTalk: A Framework for Developing Domain Spe-
cific Executable Models. The 8th OOPSLA Workshop
on Domain-Specific Modeling, (926):7.

Inostroza, P. and Van Der Storm, T. (2015). Modular in-
terpreters for the masses implicit context propagation
using object algebras. In Proceedings of the 2015
ACM SIGPLAN International Conference on Genera-
tive Programming: Concepts and Experiences, pages
171-180. ACM.

ISO/IEC 25010 (2011). Systems and software engineering
— systems and software quality requirements and eval-
uation (square) — system and software quality models.
Standard, International Organization for Standardiza-
tion, Geneva, CH.

Jansen, A. and Bosch, J. (2005). Software Architecture as
a Set of Architectural Design Decisions. 5th Work-
ing IEEE/IFIP Conference on Software Architecture
(WICSA’05), pages 109-120.

Jones, N. D., Gomard, C. K., and Sestoft, P. (1993). Par-
tial Evaluation and Automatic Program Generation.
Prentice-Hall International.

Jorges, S. (2013). Construction and evolution of code
generators: A model-driven and service-oriented ap-
proach, volume 7747. Springer.

Kabbedijk, J., Bezemer, C.-P,, Jansen, S., and Zaidman, A.
(2015). Defining multi-tenancy: A systematic map-
ping study on the academic and the industrial perspec-
tive. Journal of Systems and Software, 100:139-148.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Mod-
eling: enabling full code generation. John Wiley &
Sons.

Klint, P. (1981). Interpretation Techniques. Software: Prac-
tice and Experience, 11(June 1979):963-973.

Meijler, T. D., Nytun, J. P, Prinz, A., and Wortmann, H.
(2010). Supporting fine-grained generative model-
driven evolution. Software & Systems Modeling,
9(3):403-424.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316-344.

Ousterhout, J. K. (1998). Scripting: Higher-Level Program-
ming for the 21st Century. Computer, 31(3):23-30.

Riehle, D., Fraleigh, S., Bucka-Lassen, D., and Omorogbe,
N. (2001). The architecture of a UML virtual ma-
chine. International Conference on Object Oriented
Programming Systems Languages and Applications
(OOSPLA), (February):327-341.

Rohou, E., Swamy, B. N., and Seznec, A. (2015). Branch
prediction and the performance of interpreter - Don’t
trust folklore. 2015 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO),
pages 103-114.

Romer, T. H., Lee, D., Voelker, G. M., Wolman, A., Wong,
W. a., Baer, J.-L., Bershad, B. N., and Levy, H. M.
(1996). The structure and performance of interpreters.
ACM SIGPLAN Notices, 31(9):150-159.

Saaty, T. (1990). How to make a decision: The analytic
hierarchy process. European Journal of Operational
Research, 48(1):9-26.

Schramm, A., Preufiner, A., Heinrich, M., and Vogel, L.
(2010). Rapid UI development for enterprise appli-
cations: Combining manual and model-driven tech-
niques. Models, 6394 LNCS(PART 1):271-285.

Schunselaar, D. M. M., Gulden, J., Van Der Schuur, H., and
Reijers, H. A. (2016). A Systematic Evaluation of En-
terprise Modelling Approaches on Their Applicability
to Automatically Generate Software. In /8th IEEE
Conference on Business Informatics.

Shali, A. and Cook, W. R. (2011). Hybrid Partial Eval-
uation. Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, pages 375-390.

Smolik, P. and Vitkovsky, P. (2012). Code Generation Nir-
vana. Modelling Foundations and Applications, pages
319-327.

Stahl, T., Volter, M., Bettin, J., Haase, A., and Helsen, S.
(2006). Model-Driven Software Development: Tech-
nology, Engineering, Management.

Svahnberg, M., Wohlin, C., Lundberg, L., and Matts-
son, M. (2003). A Quality-Driven Decision-Support
Method for Identifying Software Architecture Candi-
dates. International Journal of Software Engineering
and Knowledge Engineering, 13(05):547-573.

Tankovic, N. (unknown). Model Driven Development Ap-
proaches: Comparison and Opportunities. Technical
report.

Tankovié, N., Vukotié, D., and Zagar, M. (2012). Rethink-
ing Model Driven Development : Analysis and Op-
portunities. Information Technology Interfaces (ITI),
Proceedings of the ITI 2012 34th International Con-
ference, pages 505-510.

Thibault, S. and Consel, C. (1997). A framework for ap-
plication generator design. ACM SIGSOFT Software
Engineering Notes, 22(3, May 1997):131-135.

Thibault, S. A., Marlet, R., and Consel, C. (1999). Domain-
Specific Languages : From Design to Implementa-
tion Application to Video Device Drivers Genera-
tion. IEEE Transactions on Software Engineering,
25(3):363-377.

Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-
specific languages: an annotated bibliography. ACM
Sigplan Notices, 35(6):26-36.

Varrd, G., Anjorin, A., and Schiirr, A. (2012). Unification of
compiled and interpreter-based pattern matching tech-
niques. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 7349 LNCS:368—
383.

Voelter, M. (2009). Best Practices for DSLs and Model-
Driven Software Development. Journal of Object
Technology, 8(6):79-102.

Voelter, M. and Visser, E. (2011). Product Line Engineer-
ing Using Domain-Specific Languages. 15th Inter-
national Software Product Line Conference, (Section
11):70-79.

Wohlin, C. (2014). Guidelines for Snowballing in System-
atic Literature Studies and a Replication in Software
Engineering. 18th International Conference on Evalu-
ation and Assessment in Software Engineering (EASE
2014), pages 1-10.

Yoder, J. W. and Johnson, R. (2002). The Adaptive Object-
Model Architectural Style. The Working IEEE/IFIP
Conference on Software Architecture 2002 (WICSA3
’02), pages 1-25.

Zhu, L., Uke, a. Y. B., Gorton, I. a. N., and Jeffery, R.
(2005). Tradeoff and Sensitivity Analysis in Soft-
ware Architecture Evaluation Using Analytic Hierar-
chy Process. pages 357-375.

Zhu, M. (2014). Model-Driven Game Development Ad-
dressing Architectural Diversity and Game Engine-
Integration. PhD thesis, Norwegian University of Sci-
ence and Technology.

