
The Dark Side of Event Sourcing:
Managing Data Conversion

Michiel Overeem1, Marten Spoor1, and Slinger Jansen2

1{m.overeem, m.spoor}@afas.nl, Department Architecture and Innovation, AFAS Software, The Netherlands
2slinger.jansen@uu.nl, Department of Information and Computing Sciences, Utrecht University, The Netherlands

Abstract—Evolving software systems includes data schema
changes, and because of those schema changes data has to be
converted. Converting data between two different schemas while
continuing the operation of the system is a challenge when that
system is expected to be available always. Data conversion in
event sourced systems introduces new challenges, because of
the relative novelty of the event sourcing architectural pattern,
because of the lack of standardized tools for data conversion, and
because of the large amount of data that is stored in typical event
stores. This paper addresses the challenge of schema evolution
and the resulting data conversion for event sourced systems. First
of all a set of event store upgrade operations is proposed that
can be used to convert data between two versions of a data
schema. Second, a set of techniques and strategies that execute
the data conversion while continuing the operation of the system
is discussed. The final contribution is an event store upgrade
framework that identifies which techniques and strategies can
be combined to execute the event store upgrade operations
while continuing operation of the system. Two utilizations of
the framework are given, the first being as decision support in
upfront design of an upgrade system for event sourced systems.
The framework can also be utilized as the description of an
automated upgrade system that can be used for continuous
deployment. The event store upgrade framework is evaluated in
interviews with three renowned experts in the domain and has
been found to be a comprehensive overview that can be utilized
in the design and implementation of an upgrade system. The
automated upgrade system has been implemented partially and
applied in experiments.

Index Terms—Event Sourcing, CQRS, Event Driven Architec-
ture, Schema Evolution, Software Evolution, Schema Versioning,
Deployment Strategy, Data Transformation, Data Conversion

I. INTRODUCTION

Applications that do not evolve in response to changing
requirements or changing technology become less useful, as
Lehman [1] in his law of continuing change stated many
years ago. Neamtiu and Dumitras [2] shows that this is a
reality for modern cloud systems as many of them update
more than once a week. Chen [3] describes how they applied
continuous delivery on multiple projects to achieve shorter
time to market, and an improved productivity and efficiency.
Several technical challenges including seamless upgrades are
identified by Claps et al. [4]. The fast pace of evolution and
deployment of cloud systems conflicts with the requirement
to be available always and support uninterrupted work. For
modern cloud systems to support the fast pace of evolution,

This is an AMUSE paper. See amuse-project.org for more information.

upgrade strategies that are fast, efficient, and seamless have to
be designed and implemented.

One of the architectural patterns that in recent years emerged
in the development of cloud systems is Command Query
Responsibility Segregation (CQRS). The pattern was introduced
by Young [5] and Dahan [6], and the goal of the pattern is to
handle actions that change data (those are called commands)
in different parts in the system than requests that ask for data
(called queries). By separating the command-side (the part that
validates and accepts changes) from the query-side (the part
that answers queries), the system can optimize the two parts
for their very different tasks.

Young [7] describes CQRS as a stepping stone for event
sourcing. Event sourcing is a data storage model that does
not store the current (or last) state, but all changes leading
up to the current state. Fowler [8] explains event sourcing
by comparing it to an audit trail: every data change is stored
without removing or changing earlier events. The events stored
in an event store are stored as schema-less data, because the
different events often do not share properties. A store with an
explicit schema would make it more difficult to append events
in the store to a single stream. Data in schema-less stores is
not without schema, but the schema is implicit: the application
assumes a certain schema. This makes the problem of schema
evolution and data conversion more difficult as observed by
Scherzinger et al. [9]. Schema-less data is more difficult to
evolve as the store is unaware of structure and thus cannot
offer tools to transform the data into a new structure. Relational
data stores that have explicit knowledge of the structure of the
data can use the standardized data definition language (DDL)
to upgrade the schema and convert the data. Another problem
in the evolution of event sourced systems is the amount of
data that is stored, not only the current state, but also every
change leading up to that state. This huge amount of data
makes the problem of performing a seamless upgrade even
more important: upgrades may need more time, but they are
required to be imperceptible.

The frequency of schema changes is researched by Qiu
et al. [10]. Although the storage model is different and the
architectural pattern is relatively new there is no indication
that (implicit) schema changes in event sourcing are less of
a challenge. Recovery of the implicit schema does not solve
the problem for event stores, it only helps in finding the right
operations to transform to a new schema.

978-1-5090-5501-2/17 c© 2017 IEEE SANER 2017, Klagenfurt, Austria
Main Research

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

193

https://amuse-project.org

This paper answers the question “How can an event sourced
system be upgraded efficiently when the (implicit) event schema
changes?” This question is answered by defining event store
upgrade operations that can be used to express the data
conversion executed by the upgrade of an event store in
Section IV. Existing techniques that are capable of execution
these operations to convert the events are discussed in Section V.
The efficiency of these techniques is judged on the basis of
four quality attributes: functional suitability, maintainability,
performance efficiency, and reliability. In Section VI the
deployment strategies, categorized by application and data
upgrade strategies are discussed that lead to an upgrade system
with zero downtime. The final framework that describes how
to design and implement either an ad-hoc upgrade strategy, or
a fully automated upgrade system is proposed in Section VII.
The final framework is evaluated with three Dutch experts
in the field of event sourcing, who have six or more years
of experience with building and maintaining event sourced
systems, and these results can be found in Section VIII.
Section IX summarizes the contributions and states future
work.

II. COMMAND QUERY RESPONSIBILITY SEGREGATION

The foundations of CQRS were laid by Meyer [11] in the
Command-Query Separation (CQS) principle. He defined a
command as “serving to modify objects” and a query is “to
return information about objects”, or informally worded “asking
a question should not change the answer”. Figure 1 shows the
CQRS pattern: commands are accepted by the command-side
and produce events which are processed by the query-side. The
query-side projects these events into a form that is suitable for
querying and presenting. The command-side and the query-
side both have their own data store: the first store is used
to maintain data that is used in validating requested changes,
and the second store is used to retrieve data for displaying or
reporting.

command
command-side

query
query-side

event

Figure 1. The architectural pattern CQRS.

The command-side communicates with the query-side
through asynchronously sending events. These events are used
by the query-side to build a view of the state that can be used
to query and present data. By doing this asynchronously the
query-side does not influence the performance of the command-
side. However, this does lead to eventual consistency. This is a
weaker form of consistency that Vogels [12] defines as “when
no updates are made to the object, the object will eventually
have the last updated value”. The system guarantees that the
query-side eventually will reflect the events produced in the

command-side. However, there are no guarantees on how fast
this will be done. A system with a large delay is unfeasible,
because in that case queries will often return data that does
not reflect the latest changes send to the command-side. There
are difficulties introduced by eventual consistency, such as
returning items to a client that in fact are already deleted
through commands send to the command-side. The patterns
to overcome this difficulty and others are out of scope for the
current paper.

The asynchronous sending of events between the command-
side and query-side results in a weak coupling. The resulting
freedom and flexibility in designing the system leads to avail-
ability, scalability, and performance among other advantages.
The store used in the command-side is often an event store,
because it is natural to store the events that are produced by
the command-side. This proposed data storage model has a
number of benefits that make it specifically useful as a store
for the command-side of a CQRS system. First of all, the
command-side is only used for accepting changes and never
for queries, and the performance of the store is not thus not
hampered by concurring reads and writes. Second, the store
contains every change ever accepted into the system, making
it easy to inspect when and by whom a change was done.
A third benefit is the possibility to rebuild the current state
(for instance the query-store) in the system by replaying the
events. The replaying of events also enables easy debugging.
The fourth benefit is the possibility to analyze the events for
patterns in usage. This information is impossible to extract
from a store that only persists the last state of the data. In
the query-side a diverse range of stores can be used, such
as relational, graph, or NoSql databases. The main goal of
this store is to support the easy and fast retrieval of data, in
whatever form the application requires.

The loosely coupled nature of CQRS combined the benefits
of the event sourcing approach makes it a fitting architectural
pattern for cloud systems. Event sourcing itself is not tied
exclusively to CQRS, the coupling based on events is similar to
that in more general event-driven architectures, as described by
Michelson [13]. The events in the event store are processed by
the system to build the query-side or execute complex processes.
The CQRS pattern and its sub-patterns are described in more
detail by Kabbedijk et al. [14]. CQRS from a practitioners
viewpoint is studied by Korkmaz [15] in order to gain better
understanding of the benefits and challenges. Maddodi et al.
[16] studies a CQRS system in the context of continuous
performance testing.

III. RELATED WORK

The work related to this paper is divided in data conver-
sion, specifically schema-less data conversion, and application
deployment.

Data Conversion - Two approaches to data conversion
are defined by Jensen et al. [17]: schema versioning and
schema evolution. Schema versioning is accommodated when
a database system allows the accessing of all data, both
retrospectively and prospectively, through user definable version

194

interfaces. Schema evolution is accommodated when a database
system facilitates the modification of the database schema
without loss of existing data. Section V will show that both
schema versioning and schema evolution are suitable techniques
for event store upgrades.

The event store, used as a storage for the command-side of
the CQRS system is schema-less, and in that respect similar
to a NoSQL database as described by Scherzinger et al. [18]
and Saur et al. [19]. Although the store is schema-less the data
itself does have a schema, but it is implicit: the application, as
defined by Fowler [20], assumes a certain schema without this
schema being actually present in the store. Within relational
stores the standardized DDL can be used to upgrade the schema
and convert the data, a possibility missing in NoSQL stores.
Scherzinger et al. [18] approach the implicit schema and lack
of a DDL for NoSQL by proposing a new language that can be
used to convert the data in a NoSQL store. Although this fills
a gap in the standardization of NoSQL stores, without support
in the stores the problem of data conversion in NoSQL stores
remains. To aid the evolution of the data stored Saur et al. [19]
describe an extension to one specific NoSQL database. This
extension implements an approach that Sadalage and Fowler
[21] describe as incremental migration: migrating data when
it is accessed. While the research of Saur et al. [19] is similar
to the research described in this paper, the solution is tied to a
specific technology and not applicable in systems that use a
similar data model, but with a different database technology.

Both Cleve et al. [22] and Qiu et al. [10] quantity schema
changes occurring in the evolution of applications. Their work
is aimed at relational models, and it is not clear how these
results translate to event stores. Future studies need to be
conducted before these results can be applied to event stores.

The impact of schema changes on application source code is
studied by Meurice et al. [23] and Maule et al. [24]. However,
the direction of the impact is different with schema-less stores
and implicit schemas. The change originates in the application
holding the implicit schema and impacts the data in the schema-
less store.

Application Deployment - Blue-green deployment is an
upgrade strategy that utilizes two slots to which different
versions of an application can be deployed. One of the slots is
active, while the other one is inactive. Upgrading is always done
in the inactive slot, and the user is not hindered while upgrading.
This strategy is followed by different authors. Callaghan [25]
describes a tool written by Facebook to perform online (and
zero downtime) upgrades on MySql in four phases: (1) copy the
original database, (2) upgrade the copy to the new schema, (3)
replay any changes happened on the original database during
copy/build phase, and (4) finally switch active databases. This
approach is very similar to the pattern described by Keller
[26] who applied it in the migration of a legacy system. With
IMAGO Dumitras and Narasimhan [27, 28] use blue-green
deployment for their parallel universe: they reduce upgrade
failures by isolating IMAGO the production system from the
upgrade operations, and completing the upgrade as an atomic
operation. QuantumDB, a tool created by de Jong and van

Deursen [29], applies the expand-contract strategy (explained
in Section VI) with blue-green deployment.

Hick and Hainaut [30] and Domínguez et al. [31] developed
and used MeDEA: a tool that focuses on traceability of
artifacts. MeDEA makes it possible to translate changes from
a conceptual model of a relational database to schema changes
in the actual database. Curino et al. [32, 33] worked on PRISM
and PRISM++, a database administrator tool that calculates the
SQL statements needed to upgrade a schema. While calculating
those statements it can check for information preservation,
backwards compatibility, and redundancy. These approaches
solve the problem of analyzing schema changes and generating
data conversion statements, something that is not part of the
solution presented in this paper.

The main differences between event store data conversion
and the existing research are the usage of an implicit schema
and the amount of data in an event store. Furthermore, this
paper does not propose a new tool which is specific to a certain
technology or database type, but rather proposes strategies
that can be applied regardless of specific technologies. In this
paper the techniques and strategies from existing work are
extracted and applied to event sourcing. This results in an
event store upgrade framework that can be used in the design
and implementation of an upgrade system.

IV. EVENT STORE UPGRADE OPERATIONS

An event store contains different event streams and events.
An example is given: the event store of a WebShop application,
shown in Figure 2. The two streams contain many events, but
only two events per stream are shown as an example.

WebShop Event Store

Customer Event Stream #1

ShoppingCart Event Stream #13

CustomerCreatedEvent
CustomerName=J. Doe
Address=Avenue 10

CustomerMovedEvent
Address=Highway 15

AddedToCartEvent
Article=14325
Amount=2

RemovedFromCartEvent
Article=5677
Amount=3

...

...

...

...

...

...

Figure 2. An example event store with different stream and event types.

The Figure shows two streams part of the store: one
for customer #1, and the stream of shopping cart #13. In
the application these streams belong to two separate and
independent event sources. These event sources produce these
events as the result of certain actions. For example, the addition
of a product to a cart by a user should result in the added to
cart event. The different event types such as added to cart,
removed from cart, and customer created contain different
attributes. The added to cart event contains the article (an
identifier) and the amount (an integer) among others. Event
listeners receive these events and create a view of the data
that can be queried. This knowledge of event types and their
properties is the implicit schema that is part of the application
code.

195

Table I
THE EVENT STORE UPGRADE OPERATIONS, CATEGORIZED BY LEVEL AND COMPLEXITY.

Level Complexity Operation Description

Event
Basic

Add attribute An attribute is added to an event.
Delete attribute An attribute is deleted from an event.
Update attribute An attribute is updated by changing the name or value(type).

Complex
Merge attributes Two attributes are combined to a single attribute.
Split attribute One attribute is split into two attributes.

Stream

Basic

Add event A new event is added to the stream.
Delete event An event is deleted from the stream.
Rename event An event type is renamed.

Complex
Merge events Multiple events are combined to one
Split event One event is split into two events.
Move attribute One attribute is moved from one event type to another.

Store

Basic
Add stream A new stream is added to the store.
Delete stream A stream is deleted from the stream.
Rename stream A stream identifier is renamed, or a type is renamed.

Complex
Merge streams Multiple streams are combined to one stream.
Split stream One stream is split into two streams.
Move event An event is moved from one stream to another stream.

An event store has a structure of three levels:
The event store - A collection of streams, and every stream
is of a certain type and uniquely identified by its identifier.
The event stream - Every stream is a collection of events
that originated from a single source and is ordered by the
event creation date. In an event sourced system there should
be a single source of all the events in a single stream. The
boundary of the stream is very important: a source has a one-
to-one relation with its stream. It is this boundary that makes
the event sourced systems scalable: every event source is the
owner of a stream and has no relation with other streams.
An event source and its event stream can be moved between
machines in a cluster without difficulty. The different event
streams could also be stored in different event stores. This is
possible because the event source is not depended on other
sources.
The events - An event consists of a type and content in the
form of key-value pairs. The type is used to route events to
the projectors that are interested in specific types of events.

The event store upgrade operations are used to express how
an event store version 1.0 can be transformed into version
2.0. These operations have the same purpose as the NoSQL
schema evolution language proposed by Scherzinger et al. [18]:
they give a common language to express the conversion of an
event store. The full list of operations is shown in Table I. Two
categorizations are applied: structure level and complexity. The
operations on the store level are executed on one or multiple
streams, the stream level operations convert one or more events
within the same stream, and the event level operations convert a
single event. The update of a stream is expressed by the stream
level operations while the update of an event is expressed by
one or more event level operations. Every level of operations
is also categorized in basic and complex operations. Basic
operations are seen as the foundational operations: they cannot

be expressed by other operations. The complex operations can
be built by combining several basic operations, making the
categories with complex operations infinitely large.

The operations presented are agnostic of the business
domain of the application and its functionality. The process
of expressing the transformation in these operations should
be done manually, because it should reflect the intent of the
upgrade. Schema changes can be expressed by different sets
of operations and these different sets have their own effects.
An example is given: the WebShop application is upgraded to
a new version, and part of the upgrade is a change in storing
addresses. Figure 2 shows the old event definition: a single
attribute for both street and number. In the new version, this
should be stored in two separate attributes. This data conversion
can be done in multiple ways and two possibilities are given:

1) Every event could be updated with the split attribute
operation, and this would split every address attribute
in both a street and number attribute. This increases the
maintainability of the system because all event handling
code can assume the presence of the two new attributes.

2) Every customer stream is updated with an add event
operation that represents the conversion. In this trans-
formation the old information is preserved (to repair
mistakes in the split operation for instance). But now the
application should be able to deal with both old and new
addresses, because events can contain either of the two
forms.

Although both options transform the event store differently
the two resulting versions of the WebShop application are
functionally equivalent to the users of the system. However,
the inner workings differ significantly. In the first solution the
knowledge of the initial address property together with the
values is removed. The conversion itself has changed the event

196

store, and now it appears that the events always contained the
two separate attributes. The second solution retains the old
addresses, and adds the split in two attributes as an event to
this system. This conversion keeps the old events intact and
does not remove information from the store. This example
illustrates the need for requirements defined by stakeholders
to guide the data conversion.

V. EVENT STORE UPGRADE TECHNIQUES

In this section five existing techniques that can convert an
event store between two schemas by means of the event store
upgrade operations are discussed.

Multiple versions - In this technique multiple versions of
an event type are supported throughout the application. The
event structure is extended with a version number as suggested
by Betts et al. [34]. This version number can be read by all
the event listeners, and they have to contain knowledge of the
different versions in order to support them. In this technique the
event store remains intact as old versions are never transformed.
There are no extra write operations needed to convert the store.

Upcasting - Upcasting centralizes the update knowledge
in an upcaster: a component that transforms an event before
offering it to the application. Different than in the multiple
versions technique is that the event listeners are not aware of
the different versions of events. Because the upcaster changes
the event the listeners only need to support the last version.
This technique is suggested by both Betts et al. [34] and Axon
Framework [35].

Lazy transformation - This technique also uses an upcaster
to transform every event before offering it to the application,
but the result of the transformation is also stored in the event
store. The transformation is thus applied only once for every
event, and on subsequent reads the transformation is no longer
necessary. This technique is similar to the ones described by
Sadalage and Fowler [21], Roddick [36], Tan and Katayama
[37], and Scherzinger et al. [9].

In place transformation - A technique applied by many
systems using a relational database. These systems convert the
data by executing SQL statements such as ALTER TABLE (to
alter the schema) and UPDATE (to alter the data). As described
by Scherzinger et al. [9], NoSQL databases do not have such
a possibility. In those cases a batch job is run that reads the
data, transforms it, and writes the updated data back to the
database. The documents in the database are updated by this
job: adding, deleting, renaming properties, and transforming
the values. This technique can be applied to event stores in
the same manner.

Copy and transformation - This technique is similar
to the one described by Callaghan [25] and Dumitras and
Narasimhan [28]: it copies and transforms every event to a
new store. In this technique the old event store stays intact,
and a new store is created instead.

The event store upgrade techniques have their own strengths
and weaknesses. To make this visible the techniques are judged
on four quality characteristics from ISO/IEC 25010:2011 [38]:

functional suitability, maintainability, performance efficiency,
and reliability. The other four characteristics are regarded as
not relevant for these upgrade techniques. Compatibility is a
requirement for every upgrade system: it should be compatible
with the overall system. End-users of the system will not
interact with the upgrade system and thus is usability not
relevant. The upgrade system is one of the components in
the overall security, and therefore the security should not be
different than in other components. Finally, portability is not
regarded as a requirement for upgrade systems.

Functional suitability - All five techniques can be im-
plemented to achieve functional completeness. However, to
execute complex store operations such as merging multiple
streams the technique needs to read from multiple streams.
When the technique is a run-time technique such as multiple
versions, upcasting, and lazy transformation this violates the
independence of the streams. The streams could be spread out
over different databases and reading them together at the same
time in the application is unfeasible. Therefore, the techniques
multiple versions, upcasting, and lazy transformation are not
functionally complete. The other two techniques are executed
by a separate batch job that does not adhere to the principle
of reading a single stream at a time.

Maintainability - Multiple versions is the least maintainable
technique, because the support of multiple versions is spread
throughout the application code. The techniques upcasting
and lazy transformation have a better maintainability, be-
cause the transformation code can be centralized in those
implementations. However, they all do accumulate conversion
code, because either the conversion result is not stored, or
there is no way in telling when everything is converted. The
implementation of the lazy transformation technique should
apply all conversions that are not yet applied to specific
events when needed. In place transformation and copy and
transformation score the highest on maintainability, because in
those techniques older transformations and their code do not
have to be kept. After the execution of the data conversion,
every event is transformed into a new version and thus the
conversion code is no longer necessary.

Performance efficiency - Multiple versions and upcasting
are the most efficient, because they only transform events
when they need to be transformed without adding extra write
operations to the store. The transformations are done in-memory
as needed, without writing the events back to the store. The
techniques lazy transformation and in place transformation
score a bit worse, because they add the extra write operations
that permanently store the changes. copy and transformation
has the worst performance efficiency, because every event is
read and copied to a new store, even if there are no operations
affecting the event.

Reliability - Three techniques score high on reliability,
either they do not change the store (multiple versions and
upcasting) or make a backup (copy and transformation). The
other two techniques change the event store permanently,
making a backup mandatory.

197

Table II shows the overview of the different techniques and
their evaluation with respect to the four quality characteristics.
A plus means that the technique satisfies the quality characteris-
tic, a minus means that the quality characteristic is not satisfied.
A plus minus expresses an acceptable satisfaction, but there
is room for improvement. These ranks are the result of both
literature study and evaluation with the experts as described in
Section VIII.

Table II
THE EVENT STORE TECHNIQUES COMPARED ON FOUR QUALITY

CHARACTERISTICS.
Fu

nc
tio

na
l

su
ita

bi
lit

y

M
ai

nt
ai

na
bi

lit
y

Pe
rf

or
m

an
ce

ef
fic

ie
nc

y

R
el

ia
bi

lit
y

Multiple versions +/− − + +

Upcasting +/− +/− + +

Lazy transformation +/− +/− +/− −
In place transformation + + +/− −
Copy and transformation + + − +

Table II shows a preference for upcasting on the four quality
characteristics, but specific context or requirements could steer
companies towards a different technique such as multiple
versions. These requirements could be a short time to market
(and thus not having the time to implement a more maintainable
technique such as upcasting. The event store upgrade operations
related to multiple event sources are considered to be executed
by non-run-time techniques only. However, the choice for a
run-time technique when complex store operations are not
supported is not compulsory. Of course systems can implement
a non-run-time technique even if they plan not to support the
complex store operations.

VI. APPLICATION AND DATA UPGRADE STRATEGIES

According to Humble and Farley [39] and Jansen et al. [40],
deploying software involves three phases: Prepare and manage,
Installing, and Configuring. In the first phase, the environment
in which an application is deployed should be prepared and
managed: both hardware and software dependencies should be
in place. During the Installing-phase the application itself is
deployed. The final phase, the Configuring-phase is used to
configure the application and make it ready for use.

The techniques that are discussed in the previous section
are performed in different phases. Three of the five techniques
were already identified as run-time techniques in the previous
section: multiple versions, upcasting, and lazy transformations.
They execute the event store upgrade operations at run-time
and are deployed along with the application binaries, therefore
they are part of the Installing-phase.

The last two techniques, in place transformation and copy
and transformation, are not part of the actual application. Both
techniques perform the data conversion within a separate batch
job that needs to be run before the new application version

is deployed, and therefore belong to the Configuring-phase.
Although the code that performs the technique should be
deployed it cannot be part of the application as the application
itself is only deployed in the Installing-phase. These two
techniques require a second deployment strategy aimed at
the deployment of the data conversion logic.

The simplest deployment strategy is to copy the new
application onto the machine(s) replacing the older version.
Brewer [41] refers to this approach as fast reboot. The time
that it takes to bring down the application process, copy the
new application, and starting the application process again is
the downtime that is observed with this strategy. Its simplicity
is its biggest selling point, but its biggest downside is that
this strategy is not without downtime. Deployment strategies
described by Pulkkinen [42] such as feature flagging, dark
launching, and canary release are excluded from the list of
discussed strategies, because they are specifically used to gain
more knowledge about the users and/or (system) performance.
Four strategies found in literature, suitable for upgrading an
event sourced system, are discussed:

Big flip - This strategy, described by Brewer [41], uses
request routing to route traffic to one half of the machines,
while they other half is made available for the upgrade. The
traffic is rerouted again when the first half is upgraded after
which the second half can be upgraded. When all machines
are upgraded the load balancer again can route the traffic to
every machine. During the upgrade only half of the machines
can be used to handle traffic.

Rolling upgrade - This strategy too uses some form of
request routing to make sure that some machines do not receive
requests. The machines in this strategy are upgraded in several
upgrade groups defined by Dumitras et al. [43]. Because a
small number of machines is being upgraded at a time, more
machines are available to handle the traffic. However, the
machines that are available are running mixed versions of the
application: both those that are not yet upgraded and those that
are already upgraded. This makes rolling upgrades complex,
and the application should be able to handle these kinds of
rolling upgrades.

Blue-green - Blue-green deployment is described by both
Humble and Farley [39] and Fowler [44]. According to
Humble [39] this is one of the most powerful techniques for
managing releases. Every application is always deployed twice:
a current version and either a previous version or a future
version. One of the deployments is active at a given time,
either the green slot or the blue slot. When the application is
upgraded, the inactive slot is used to deploy the new version.
Blue-green deployment can be done without downtime, as
no traffic is going to the version that is upgraded. After the
upgrade, the traffic can be rerouted to the upgraded slot,
switching between blue and green. This strategy is similar
to the big flip strategy, but reserves extra resources for the
upgrade while the big flip strategy uses existing resources and
thus limits the capacity during an upgrade.

198

Table III
COMBINATIONS OF TECHNIQUES AND STRATEGIES THAT RESULT IN ZERO DOWNTIME.

Application upgrade strategy Data upgrade strategy
Multiple version big flip, rolling upgrade, blue-green

Upcasting big flip, rolling upgrade, blue-green

Lazy transformation big flip, rolling upgrade, blue-green

In place transformation big flip, rolling upgrade, blue-green expand-contract

Copy and transformation big flip, rolling upgrade, blue-green expand-contract, blue-green

Expand-Contract - A strategy, also known as parallel
change, described by Sato [45] in three phases. The first phase
is the expand phase: an interface is created to support both
the old and the new version. After that the old version(s) are
(incrementally) updated to the new version in the migrate
phase. Finally in the contract phase, the interface is changed
so that it only supports the new phase This strategy is suitable
for upgrading components that are used by other components.
By first expanding the interface of the component depending
components can be upgraded. When all the depending
components use the new interface the old interfaces can
be removed. This strategy is not applicable for application
upgrades, however, it can be utilized in upgrading the database.

An upgrade of an event sourced system needs an application
deployment strategy. This deployment strategy executes the
run-time event store upgrade technique, but if the upgrade
uses a non-run-time technique a data upgrade strategy is
also required. The three run-time techniques multiple versions,
upcasting, and lazy transformation only need an application
deployment strategy as they do not alter the data store. The
other two techniques, in place transformation and copy and
transformation, do need a data upgrade strategy.

Not all combinations result in an upgrade that does not
affect the operation of the system in a negative manner.
Table III summarizes the combinations that would lead to a
zero downtime upgrade. For the run-time techniques, multiple
versions, upcasting, or lazy transformation, an application
upgrade strategy is sufficient, and the big flip, rolling upgrade,
and blue-green deployment strategies will all result in a zero
downtime upgrade. All three strategies upgrade part of the
machines while maintaining operations on the other parts, and
the techniques are performed at run-time.

For the non-run-time techniques, in place transformation and
copy and transformation, the same three application upgrade
strategies can be used and result in zero downtime upgrades.
However, a data upgrade strategy is also needed to execute
the batch job that converts the data. The strategy blue-green
in combination with in place transformation is not possible,
because the in place nature of the technique conflicts with the
strategy that needs to have two slots available. Therefore, the
technique in place transformation only works with the expand-
contract strategy. Copy and transformation, the other non-run-
time technique works with both the data upgrade strategies,
blue-green deployment and expand-contract.

VII. EVENT STORE UPGRADE FRAMEWORK

This section explains how the event store upgrade operation,
techniques, and strategies form the event store upgrade frame-
work that can be utilized in two distinct manners. Figure 3
shows the different event store upgrade operation, techniques,
and strategies and their combinations.

The first row of Figure 3 shows the event store upgrade op-
erations, the darker yellow identifies the category of operations
that crosses event streams and cannot be executed run-time.
The event store upgrade techniques are colored green, the
darker elements identify schema evolution techniques, while
the others are schema versioning techniques. The last two
rows identify both application and data upgrade strategies. The
arrows between single elements, or groups of elements, identify
the valid combinations. The valid combinations are explained
in more detail along with the utilization of the framework.

Combined with

Deployed with

Executed byExecuted by

Data upgradeApplication upgrade

Lazy transformation

Upcasting

In place
transfor-
mation

Multiple versions
Copy and
transfor-
mation

Basic &
Complex

Event

Basic &
Complex
Stream

Basic
Store

Complex
Store

Big Flip
Rolling

Upgrade
Blue-Green

Expand-
Contract

Blue-
Green

Deployed with

Figure 3. The Event Store Upgrade Framework.

199

The first utilization of the event store upgrade framework
is a decision tree that supports the upfront design and imple-
mentation of an upgrade system for event sourced systems,
presented in Figure 4. This tree shows the decisions that form
the design and implementation of an upgrade system.

Design an upgrade

Is support of
complex store

operations
necessary?

No Yes

In place transformation
&& Expand-contract

Choose a
non-run-time

technique

Copy and transformation

Implement the upgrade

Choose a run-time
upgrade technique

Choose an
application upgrade

strategy

Choose a
data upgrade

strategy

Multiple version
|| Upcasting
|| Lazy transformation

Big flip
|| Rolling upgrade
|| Blue-green

Expand-contract
|| Blue-green

Figure 4. Decision Tree for the Design and Implementation of an Event Store
Upgrade System.

The design starts with the question if complex store
operations need to be supported. This decision influences the
possible techniques that can be applied, because these complex
store operations cannot be executed with run-time techniques.
When support for the complex store operations is not needed
the next step is the choice of event store run-time upgrade
technique. Any of the three run-time techniques, multiple
versions, upcasting, or lazy transformation, will be sufficient
(shown with a single arrow and the || combinator) and Table II
can be used to decide what technique fits the context. When
the upgrade system should support complex store upgrade
operations, the choice is between the non-run-time techniques
in place transformation and copy and transformation. The
expand-contract application strategy follows automatically if
in place transformation is chosen as a data upgrade strategy
(shown with a single arrow and the && combinator). Two
different data upgrade strategies can be chosen with the
technique copy and transformation as follows from Table III.
Although the utilization of the framework for upfront design
has much room for context specific choices, it shows what the
possibilities are and makes the trade-offs explicit.

The second utilization of the event store upgrade framework
is a run-time decision making system. This system is imple-
mented in the event store upgrade system, and is visualized in
Figure 5. In this system the analysis of the event store upgrade
operations that need to be executed is done at upgrade time.
When the operations do not contain complex store operations,
the system can apply the run-time technique in combination
with the application upgrade strategy. If there are complex store
operations the system can deploy the non-run-time technique
with the data upgrade strategy, and then apply the application
upgrade strategy. In this utilization, the choice for run-time
technique, non-run-time technique, data upgrade strategy, and
application upgrade strategy is made upfront. The system
implements both a run-time and non-run-time technique that
fits the requirements. The two techniques are completed with an
implementation of a data upgrade and an application upgrade
strategy. Having these implementations in the system allows
for a fully automated upgrade system based on Figure 5.

Start an upgrade

Are
complex store

operations
present?No Yes

Execute the
application upgrade

Configure the run-time
upgrade technique

Configure the non-run-
time upgrade technique

Execute the
data upgrade

Figure 5. Decision Tree for an Automated Event Store Upgrade System.

VIII. EVALUATION

This work was done in the context of the development
of a large CQRS system at AFAS Software. Two authors
are working as architect and developer on this system, and
an earlier list of the event store upgrade operations was
discussed with the team that also works on this system. The
operations were implemented in combination with the copy and
transformation technique and the blue-green strategy. Multiple
data conversions were executed with this upgrade system in a
smaller experimental setting. The results of these conversions
showed to be promising, but more systematic experimentation
is necessary. Initial results showed that the event store upgrade
operations executed with copy and transformation and deployed
with blue-green were able to handle a diverse range of scenarios.
These operations could all be performed while maintaining the
operation of the system, no downtime was observed. However,
it also showed that time needed to perform the conversion

200

was longer than expected, because the query store needs to be
rebuild as well.

To evaluate the event store upgrade framework, interviews
were held with three Dutch experts in the field of CQRS and
event sourcing. They were selected because of their experience
with CQRS and event sourcing, and their presence in the
community through speaking engagements. Allard Buijze is
the founder and architect of the Axon CQRS Framework1, and
has more than six years of experience with CQRS and event
sourcing both as a developer and consultant. Dennis Doomen is
the lead architect of a large CQRS system. He has six years of
experience with CQRS, and four years with event sourcing. He
shares this experience with the community as an international
speaker and often discusses this with other practitioners. Pieter
Joost van de Sande is the founder of NCQRS2, an open source
CQRS framework. After started applying CQRS and event
sourcing more than six years ago, he recently started working
on a large event-driven architecture. All three interviewees
received training on CQRS and event sourcing from Greg
Young. Multiple goals were set for conducting the interviews.
The questions asked were directed towards these goals, and
the interviews followed this order.

1) Reveal what their experiences of upgrading CQRS
applications are, and what problems and situations they
ran into.

2) Evaluate the utility and completeness of the event store
upgrade operations.

3) Evaluate the completeness and the judgment on the qual-
ity characteristics of the event store upgrade techniques.

4) Evaluate the usefulness and completeness of the event
store upgrade framework.

The interviews led to small adjustments in the overviews
and the event store upgrade framework, as summarized in the
remainder of this section.

Naming Issues - Many small misunderstandings were
experienced around naming event store upgrade operations,
techniques, and application and data upgrade strategies. This
shows the immaturity of the field, the relatively new concept
of event sourcing, and the joining of different fields (domain-
driven design, distributed systems, and event-driven architec-
ture). The event store upgrade technique lazy transformation
was initially named lazy upcasting, but this name caused
confusion. It is not the upcasting that is done lazy, but the
transformation of the store that is executed lazily. The technique
copy and transformation was initially named replay of events,
which was mixed up with the normal procedure that is used
to load aggregate roots and rebuild projectors by replaying the
events in a CQRS system.

Frequency of Operations, and Business Requirements -
All interviewees agreed that the event store upgrade operations
across the boundaries of event streams were not common. One
of the interviewees stated “Complex event store operations,
you will not see a lot. There is a exponential relation between

1http://www.axonframework.org/
2https://github.com/pjvds/ncqrs

the level and the times you encounter an operation.” These
operations cause the need for a data upgrade strategy, which
is something that two interviewees found conflicting with the
expected immutability of the event store. As a result of this
discussion, the support of complex store operations became
the first question in the event store upgrade framework. The
interviewees explained that an event store upgrade system can
be useful, even if it does not support these complex store
operations, because they see other possibilities of solving these
schema changes. The same holds for the operations that delete
information from the store, and all interviewees suggested that
deprecating or archiving of data is preferred over the actual
deletion.

These discussions led to the distinction between functional
immutability and technical immutability. Technical immutabil-
ity is defined as the most strict form of immutability: no
changes to stored events are allowed to be made. If this level
of immutability should be preserved the schema evolution
techniques (lazy transformation, in place transformation, and
copy and transformation) cannot be applied. However, another
level of immutability is functional immutability as one of
the interviewees stated. Functional immutability allows the
transformation of events as long as the information in the events
is preserved from a business perspective. Within functional
immutability there is far more room for techniques that alter
the stored events.

Variation in Implementation - Two out of three intervie-
wees explained a variation of the technique multiple versions
that improved the code reusability and maintainability. By
re-using the already existing code to read older versions the
maintainability is improved. These comments show that there
is a large design space in implementing the techniques that
removes some of the disadvantages. However, Table II was not
changed, because the conclusion was that the average quality
of the technique was not changed by these implementation
variations.

Projections - An event sourced system always has a data
store for querying and presenting data next to the event store,
because the event store itself cannot be utilized for that purpose.
This query store is built from the event data by projectors
resulting in projections. These projections are the data that is
shown to users while the event store is used for validation of
new changes. Two interviewees explained that many schema
changes can be applied by not changing the event schema
at all, but by only changing the projectors and projections.
The feasibility of this approach and its up- and downsides
are regarded as out of the scope of this paper, and should be
studied in more detail.

Upfront Design and Prototyping - The interviews show
two sides to look at event sourced systems. Two out of three
interviewees emphasized the importance of upfront design: by
designing the event store, the streams, and the events with
enough upfront thought, upgrades are less often necessary.
One interviewee stated “Event sourcing needs a lot of upfront
thought, which is hard to do with agile development.” This line

201

http://www.axonframework.org/
https://github.com/pjvds/ncqrs

of thought is also seen in the application of event storming3 in
the design of event sourced systems. This design technique is
applied to design the events in a system before implementation,
and a good design is said to forestall some of the more complex
event store upgrade operations, such as those on multiple event
streams. The other interviewee stressed the importance of
doing event store data upgrades to prevent the accumulation
of conversion code, and thus found less value in defending
technical immutability at all cost.

Completeness and Usefulness - The interviewees found
the event store upgrade framework unanimously useful and
complete. Interest in the end result was shown and encour-
agement was given to publish this material. One interviewee
stated that “You are maybe the only one, which is having such
an overview and also thought about edge cases, which I hope
never to encounter.”

IX. CONCLUSION AND FUTURE WORK

This paper contributes to the research on event sourcing
and data conversion in the following ways. First, event store
upgrade operations are presented to explicitly express the data
conversion needed to evolve an event sourced system to a
new data schema. With these operations a common language
is proposed for event sourced applications and frameworks
and their upgrade systems to express schema evolution. The
operations can also be used to analyze the impact of an event
store upgrade: one category of operations, the complex store
operations, cannot be executed at run-time without violating
the independence of the different event streams.

The second contribution is an overview of upgrade techniques
and strategies that are used in event sourcing to execute the
event store upgrade operations. This overview summarizes
best practices and literature and makes it accessible to other
practitioners. The last contribution is the event store upgrade
framework, which is utilized upfront to design and implement
an upgrade system. The framework makes the trade-offs explicit,
and supports the making of design decisions. The automated
utilization can be used to implement an event store upgrade
system that handles every event store upgrade operation in
an efficient way. The framework enables decision making
regarding upgrades downtime and enables selection of the
most performant technique and strategy. When there are no
complex store operations the conversion can be done at run-
time, and techniques that transform events in the event store
are not needed. This leads to upgrades that only need an
application upgrade strategy, which can be applied faster than
the upgrades that also needs a data upgrade strategy. The
maintainability problem that run-time techniques have can be
solved by executing those accumulated conversions whenever
a data upgrade is performed.

The event store upgrade framework is also usable as a tool to
analyze applications with respect to their level of readiness for
the cloud, for continuous delivery, and rapid software evolution.
Applications that do not have a clear upgrade system, but

3See https://www.infoq.com/news/2016/06/event-storming-ddd.

use ad-hoc data transformation are not ready. Upgrades are
done manually and are error prone. However, applications
that implement an automated upgrade system and can handle
the complete list of event store upgrade operations are ready
for continuous delivery. This allows those applications to
incorporate improvements and prevent errors in doing manual
upgrades.

Part of the upgrade framework is implemented in a CQRS
system. The copy and transformation technique together with
the blue-green strategy are used in multiple experiments to
transform an event store. This showed that more work is needed
to enable the co-evolution of the stores in the command-side
and query-side. The framework was evaluated with three Dutch
experts in the field of event sourcing. Although only three
experts were interviewed, and they had different opinions, the
event store upgrade framework was found to be valuable by
all three. The relative novelty of event sourcing can cause
problems in understanding of concepts and definitions. The
combination of literature study and expert interviews prevents
validity problems in definitions and their interpretation and in
making sure that the result of this paper is usable by other
practitioners.

To validate the event store upgrade framework the authors
plan to implement the full automated upgrade system that
uses the event store upgrade operations to select an upgrade
technique and apply the upgrade strategies. A follow up study
on the frequency of schema changes in event sourced systems,
and the possible operations should support this implementation.
The results of such a study could also help to uncover business
decisions in expressing different schema changes with regard
to for example data loss. Finally, the upgrade system could be
extended by also including the query-side of an event sourced
system. This paper only focuses on the event store, but as the
interviewees stated, schema changes can be implemented by
upgrading the projection, and not the event store. Furthermore,
a change in the event store also changes these projections and
the rebuilding of projections with the additional performance
costs is a problem that also needs more study.

ACKNOWLEDGMENT

Acknowledgment This research was supported by the NWO
AMUSE project (628.006.001): a collaboration between Vrije
Universiteit Amsterdam, Utrecht University, and AFAS Soft-
ware in the Netherlands. The NEXT Platform is developed
and maintained by AFAS Software. The authors also thank
the three experts, Allard Buijze, Dennis Doomen, and Pieter
Joost van de Sande, for their valuable experience and their
willingness to contribute to this study.

REFERENCES

[1] M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp.
1060–1076, 1980.

[2] I. Neamtiu and T. Dumitras, “Cloud software upgrades:
Challenges and opportunities,” in 2011 International

202

https://www.infoq.com/news/2016/06/event-storming-ddd

Workshop on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems, 2011, pp. 1–10.

[3] L. Chen, “Continuous delivery: Huge benefits, but chal-
lenges too,” IEEE Software, vol. 32, no. 2, pp. 50–54,
2015.

[4] G. G. Claps, R. B. Svensson, and A. Aurum, “On the
journey to continuous deployment: Technical and social
challenges along the way,” Information and Software
Technology, vol. 57, pp. 21–31, 2015.

[5] G. Young. (2010) CQRS and Event Sourcing. visited on
2016-10-11. [Online]. Available: http://codebetter.com/
gregyoung/2010/02/13/cqrs-and-event-sourcing

[6] U. Dahan. (2009) Clarified CQRS. visited on 2016-10-11.
[Online]. Available: http://www.udidahan.com/2009/12/0

[7] G. Young. (2016) A Decade of DDD, CQRS,
Event Sourcing - Domain-Driven Design Europe
2016. visited on 2016-10-11. [Online]. Available:
https://www.youtube.com/watch?v=LDW0QWie21s

[8] M. Fowler. (2005) Event sourcing. visited on 2016-10-
11. [Online]. Available: http://martinfowler.com/eaaDev/
EventSourcing.html

[9] S. Scherzinger, M. Klettke, and U. Störl, “Cleager: Eager
Schema Evolution in NoSQL Document Stores,” in Daten-
banksysteme für Business, Technologie und Web (BTW),
16. Fachtagung des GI-Fachbereichs "Datenbanken und
Informationssysteme" (DBIS), 4.-6.3.2015 in Hamburg,
Germany. Proceedings, ser. LNI, T. Seidl, N. Ritter,
H. Schöning, K.-U. Sattler, T. Härder, S. Friedrich, and
W. Wingerath, Eds., vol. 241. GI, 2015, pp. 659–662.

[10] D. Qiu, B. Li, and Z. Su, “An Empirical Analysis
of the Co-evolution of Schema and Code in Database
Applications,” Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pp. 125–135,
2013.

[11] B. Meyer, Object-Oriented Software Construction.
Prentice-Hall, 1988.

[12] W. Vogels, “Eventually consistent,” Communications of
the ACM, vol. 52, no. 1, pp. 40–44, 2009.

[13] B. M. Michelson, “Event-driven architecture overview,”
Patricia Seybold Group, vol. 2, 2006.

[14] J. Kabbedijk, S. Jansen, and S. Brinkkemper, “A Case
Study of the Variability Consequences of the CQRS
Pattern in Online Business Software,” in Proceedings
of the 17th European Conference on Pattern Languages
of Programs, Irsee, 2012.

[15] N. Korkmaz, “Practitioners’ view on command query re-
sponsibility segregation,” Master Thesis, Lund University,
2014.

[16] G. Maddodi, S. Jansen, J. P. Guelen, and R. de Jong, “The
Daily Crash: a Reflection on Continuous Performance
Testing,” in ICSEA 2016, The Eleventh International
Conference on Software Engineering Advances, 2016,
pp. 100–107.

[17] C. Jensen, C. Dyreson, M. Böhlen, J. Clifford, R. Elmasri,
S. Gadia, F. Grandi, P. Hayes, S. Jajodia, W. KÄfer
et al., “The consensus glossary of temporal database

concepts—february 1998 version,” Temporal Databases:
Research and Practice, pp. 367–405, 1998.

[18] S. Scherzinger, M. Klettke, and U. Störl, “Managing
Schema Evolution in NoSQL Data Stores,” in Proceed-
ings of the 14th International Symposium on Database
Programming Languages (DBPL 2013), August 30, 2013,
Riva del Garda, Trento, Italy., T. J. Green and A. Schmitt,
Eds., 2013.

[19] K. Saur, T. Dumitraş, and M. W. Hicks, “Evolving NoSQL
Databases Without Downtime,” in IEEE International
Conference on Software Maintenance and Evolution
(ICSME), 2016.

[20] M. Fowler. (2013) Schemaless Data Structures. visited
on 2016-10-11. [Online]. Available: http://martinfowler.
com/articles/schemaless/

[21] P. Sadalage and M. Fowler, NoSQL distilled: a brief guide
to the emerging world of polyglot persistence. Addison-
Wesley, 2012.

[22] A. Cleve, M. Gobert, L. Meurice, J. Maes, and J. Weber,
“Understanding database schema evolution: A case study,”
Science of Computer Programming, vol. 97, no. P1, pp.
113–121, 2015.

[23] L. Meurice, C. Nagy, and A. Cleve, “Detecting and Pre-
venting Program Inconsistencies under Database Schema
Evolution,” 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS), pp. 262–
273, 2016.

[24] A. Maule, W. Emmerich, and D. Rosenblum, “Impact
analysis of database schema changes,” 2008 ACM/IEEE
30th International Conference on Software Engineering,
pp. 451–460, 2008.

[25] M. Callaghan. (2010) Facebook - Online Schema Change
for MySQL. visited on 2016-10-11. [Online]. Avail-
able: https://www.facebook.com/notes/mysql-at-facebook/
online-schema-change-for-mysql/430801045932/

[26] W. Keller, “The Bridge to the New Town - A Legacy
System Migration Pattern,” in EuroPLoP, 2000, pp. 261–
268.

[27] T. Dumitras and P. Narasimhan, “No downtime for data
conversions: Rethinking hot upgrades,” Carnegie Mellon
University, Pittsburgh, Tech. Rep., 2009.

[28] T. Dumitras and P. Narasimhan, “Why Do Upgrades
Fail and What Can We Do about It?” in Middleware
2009, ACM/IFIP/USENIX, 10th International Middleware
Conference, Urbana, IL, USA, November 30 - December 4,
2009., ser. Lecture Notes in Computer Science, J. Bacon
and B. F. Cooper, Eds., vol. 5896. Urbana, IL, USA:
Springer, 2009, pp. 349–372.

[29] M. de Jong and A. van Deursen, “Continuous deployment
and schema evolution in SQL databases,” in Proceedings
of the Third International Workshop on Release Engineer-
ing, Firenze, 2015.

[30] J.-M. Hick and J.-L. Hainaut, “Database application
evolution: A transformational approach,” Data Knowl.
Eng., vol. 59, no. 3, pp. 534–558, 2006.

[31] E. Domínguez, J. Lloret, A. L. Rubio, and M. A.

203

http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing
http://www.udidahan.com/2009/12/0
https://www.youtube.com/watch?v=LDW0QWie21s
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/articles/schemaless/
http://martinfowler.com/articles/schemaless/
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/

Zapata, “MeDEA: A database evolution architecture with
traceability,” Data Knowl. Eng., vol. 65, no. 3, pp. 419–
441, 2008.

[32] C. Curino, H. J. Moon, and C. Zaniolo, “Graceful database
schema evolution: the PRISM workbench,” PVLDB, vol. 1,
no. 1, pp. 761–772, 2008.

[33] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo,
“Automating the database schema evolution process,”
VLDB J., vol. 22, no. 1, pp. 73–98, 2013.

[34] D. Betts, J. Dominguez, G. Melnik, F. Simonazzi, and
M. Subramanian, Exploring CQRS and Event Sourcing:
A journey into high scalability, availability, and main-
tainability with Windows Azure. Microsoft patterns &
practices, 2013.

[35] Axon Framework. (2016) Reference Guide Axon Frame-
work reference guide - Event Upcasting. visited on 2016-
10-11. [Online]. Available: http://www.axonframework.
org/docs/2.4/repositories-and-event-stores.html

[36] J. F. Roddick, “A survey of schema versioning issues for
database systems,” Information and Software Technology,
vol. 37, no. 7, pp. 383–393, jan 1995.

[37] L. Tan and T. Katayama, “Meta Operations for Type
Management in Object-Oriented Databases,” in DOOD,
1989, pp. 241–258.

[38] ISO/IEC 25010:2011, “Systems and software engineering
– systems and software quality requirements and evaluation

(square) – system and software quality models,” Geneva,
CH, Standard, 2011.

[39] J. Humble and D. Farley, Continuous delivery: reliable
software releases through build, test, and deployment
automation. Addison-Wesley Professional, 2010.

[40] S. Jansen, G. Ballintijn, and S. Brinkkemper, “A process
model and typology for software product updaters,” 9th
European Conference on Software Maintenance and
Reengineering (CSMR 2005), 21-23 March 2005, Manch-
ester, UK, Proceedings, 2005.

[41] E. A. Brewer, “Lessons from Giant-Scale Services,” IEEE
Internet Computing, vol. 5, no. 4, pp. 46–55, 2001.

[42] V. Pulkkinen, “Continuous deployment of software,” in
Proc. of the Seminar no. 58312107: Cloud-based Software
Engineering, 2013, pp. 46–52.

[43] T. Dumitras, P. Narasimhan, and E. Tilevich, “To upgrade
or not to upgrade: impact of online upgrades across
multiple administrative domains,” in ACM Sigplan Notices,
vol. 45, no. 10. ACM, 2010, pp. 865–876.

[44] M. Fowler. (2010) BlueGreenDeployment. visited on
2016-10-11. [Online]. Available: http://martinfowler.com/
bliki/BlueGreenDeployment.html

[45] D. Sato. (2014) ParallelChange. visited on 2016-10-
11. [Online]. Available: http://martinfowler.com/bliki/
ParallelChange.html

204

http://www.axonframework.org/docs/2.4/repositories-and-event-stores.html
http://www.axonframework.org/docs/2.4/repositories-and-event-stores.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/ParallelChange.html
http://martinfowler.com/bliki/ParallelChange.html

	Introduction
	Command Query Responsibility Segregation
	Related Work
	Event Store Upgrade Operations
	Event Store Upgrade Techniques
	Application and Data Upgrade Strategies
	Event Store Upgrade Framework
	Evaluation
	Conclusion and Future Work

