Continuous Migration
of Mass Customized Applications

Michiel Overeem
dept. Product Development
AFAS Software
Leusden, The Netherlands
michiel.overeem @afas.nl

Abstract—Model-driven engineering is a known approach for
increasing both the quality and productivity of software develop-
ment. It also enables business analysts to take a more active role
in the development process. The model allows the application to
be tailored to the customer, who no longer needs to adjust to
the software. Through the model it is possible to mass customize
the developed software applications. Mass customization allows
software producing organizations to efficiently produce and
maintain multiple similar software products. Through model-
driven engineering the similarities between these products can
be exploited while the variations are managed through models.

The increase in quality and productivity, and the mass
customization is achieved by raising the level of abstraction
on which software is developed. Changes done on the higher
level of abstraction should be translated into changes on the
resulting application. However, in many model-driven systems the
migration of the resulting application towards the new intended
state is still a (partially) manual and labor-intensive step. This
manual step requires engineers to work on a lower level of
abstraction, and thus forgoes on the increase of quality and
productivity.

In this research we study model-driven engineering environ-
ments in which the application is generated from a model.
Whenever models or parts of these model-driven engineering
environments evolve, the goal is to automatically migrate the
application and data as well. In order to reach this goal, we
formulate three solution approaches. First of all a categorization
of migration triggers that can occur is discussed, to increase the
understanding of the context of the migration. Migration triggers
can be handled with different migration strategies. Secondly, we
discuss the integration of the microservice architecture style to
achieve fine-grained incremental migration. Finally, we discuss
event sourcing as a software architecture pattern to mitigate
the complexity of data migrations. Through these solution
approaches we present our work in progress on continuous
migration for mass customized applications.

I. INTRODUCTION

Model-driven engineering (MDE) is a known approach for
increasing both the quality and productivity of software devel-
opment teams. According to Diaz et al. [1] these improvements
are achieved by raising the level of abstraction. MDE tools
can also enable business analysts to take a more active role in
the development process. The application of MDE, however,
is not only positive. Multiple experience reports, such as those

This work is a result of the AMUSE project. See amuse-project.org for
more information.

Slinger Jansen
dept. Information and Computing Sciences
Utrecht University
Utrecht, The Netherlands
slinger.jansen @uu.nl

by Tolvanen and Kelly [2] and Paige and Varr6 [3], discuss the
challenges and the effort it takes to create MDE tools. Clark
and Muller [4] report on two startups around MDE tools and
the lessons learned from those startups.

Our research focuses on MDE for enterprise software appli-
cations (ESAs). Fowler [5] states “Enterprise applications are
about the display, manipulation, and storage of large amounts of
often complex data and the support or automation of business
processes with that data.” According to Gartner [6] examples of
ESAs are CRM and ERP software. The characteristics of ESAs
are distinct from for instance games and result in different
requirements for application migration.

We believe that the model-centric approach of MDE is
especially promising for ESAs. Brown [7] defines the model-
centric approach as “the system models have sufficient detail
to enable the generation of a full system implementation from
the models themselves". The first promise is the increase
of productivity and quality. ESAs often contain repetitive
patterns of functionality, such as the maintenance of data.
MBDE increases the productivity by generating the software for
every instance of these patterns. Not only can MDE increase
the productivity by deriving these components from a model,
it also increases the quality of those components by doing it
consistently.

The second promise is flexibility, or mass customization
(as discussed by Krueger [8]) for multi-tenant ESAs. Through
the model it is possible to mass customize the developed
software applications. Mass customization allows software
producing organizations (SPOs) to efficiently produce and
maintain multiple similar software products. Through MDE
the similarities between these products can be exploited while
the variations are managed through models.

The third promise is that of self-service. Not only SPOs
want to customize the software, customers (tenants) want to
customize their own application to support their business
processes. Tenants want to be in control and make the
customization themselves.

Multi-tenant ESAs can be developed with MDE through
Model-Driven Engineering Environments (MDEEs). As stated
in our earlier research (Overeem et al. [9]), MDEEs implement
the model-centric approach. One of the challenges in MDEEs
is the continuous migration of mass customized applications.

https://amuse-project.org

implements J'

|

modeler ‘

engineer ‘ administrator

interacts

I
. ‘ develops ‘
interacts <+

runtime
environment

‘transformation|
environment

modeling
environment

management
environment

is processed by input for is served by

outputs

3

generates

application
package

deploys

application
instance

Legend

External interactor

Figure 1. A model-driven engineering environment enables a modeler to
create a model in a modeling environment. The model is subsequently translated
by the model execution engine (using a model execution approach) into an
application. An administrator uses the deployment environment to deploy the
application to a runtime environment. The user interacts with the runtime
environment.

Migration is defined as the steps that need to be executed
to make the actual deployment of an application reflect the
desired deployment. Examples of application migrations can
be the re-generation of the application to reflect an evolved
model, it could be the migration to a new version of the virtual
machine, or even the migration to a new cloud provider.

II. MODEL-DRIVEN ENGINEERING ENVIRONMENTS

Model-driven engineering environments (MDEEs) allow the
design and develop of software using the MDE approach. While
there are different variation points, all MDEEs share three
characteristics. First, they serve three key personas: the modeler,
the administrator, and the user. The engineer is involved as the
fourth persona, but this person is not served by the MDEE,
but builds and maintains it. Second, three key artifacts are
produced in the MDEE: the model, the application package, and
the application instance. Third, an MDEE offers four essential
system functions: the modeling environment, the transformation
environment, the management environment, and the runtime
environment. The MDEE concept is visualized by Fig. 1.

The modeler uses the modeling environment to produce the
model. The modeling environment varies between different
MDEEs, examples are graphical or text based modeling envi-
ronments. Versioning, sharing, and collaboration are features
that could be offered, but are not essential for the MDEE. The
essential function is the production of the model.

The modeler persona represents different types of modelers,
we identified four types of modelers in earlier research

(Overeem et al. [9]): laymen, technical business users, sql
experts, and developers.

The model is processed by the transformation engine which
generates an application package. The application package
takes on different formats, for example binaries when code
generation is used.

The application package is input for the management
environment. One of the responsibilities of the management en-
vironment is the deployment the application package. Through
the deployment the application instance is created. The
management environment is responsible for managing the
application instances. Migration of applications, caused by
different triggers, is executed by this environment. The intent
of the management environment is to automate this process,
however, the administrator can also use the management
environment to execute manual tasks.

The application instance is executed by the runtime envi-
ronment. This runtime environment consists of infrastructure
(such as operating systems and database platforms), services,
frameworks, and other components required to execute the
application instance. The third persona, the user, interacts
with this environment to execute the features offered by the
application.

III. REQUIREMENTS FOR CONTINUOUS MIGRATION

We specifically focus on those MDEEs that allow the user
to also take the role of the modeler. Without intervention of
the SPO and its engineers and administrators, the user should
be able to evolve the application through model evolution. This
results in more agility for the customer organization, they will
not be dependent on the SPO for the continuous development
of their application (at least within the capabilities of the
model). Therefore our research focuses on four operational
requirements for the migration of applications: automation,
performance, availability, and safety.

First, the migration should be automated. With automated,
we mean that the required migration steps should be derived
from the migration trigger. At no point should an engineer
manually analyze the required migration and develop custom
software to execute the migration. The automation will allow
the user/modeler to evolve the application without support of
the SPO.

Second, the migration should be performant. Research on
live programming is rapidly gaining traction (see for instance
the work of van Rozen and van der Storm [10] and Kubelka
et al. [11]). While we do not aim for a live feedback loop, we
believe that faster feedback will improve the usability of the
MDEE, supporting agile development of the application.

Third, the migration should not negatively effect the
availability of the application. We aim for a fully automated
continuously migration, meaning that scheduling should not be
necessary. Migration can thus happen on inconvenient moments
(from a business perspective), and therefore should not be
noticed by the users. We do not expect users to asses the
impact of changes on the availability, and therefore aim to let
the migration have no impact at all.

Meta-model

Modeling
environment
changes

Model changes

ransformation
environment
changes

Application
package changes

Runtime
environment
changes

Management
environment
changes

Application
instance changes

Application
migration

Legend
Possibly

|
l Leads to | leadsto
v

Starting
Event

Figure 2. A classification of migration triggers: changes from the MDEE
leading to application migration.

Finally, the migration should be safe. It should not be
possible to deploy an application that does not respond, causes
unexpected data-loss, or makes the application non-functional
in some other manner.

IV. A CATEGORIZATION OF MIGRATION TRIGGERS

A complete categorization of the migration triggers and
the migration strategies is necessary to develop a MDEE
that supports continuous migration of application. Migration
triggers originate from within the MDEE and require the
migration of one or more applications. The triggers are caused
by requirements that are implemented by different personas
taking action. These requirements are added by the modeler,
administrator, or user of the MDEE (see Fig. 1).

Fig. 2 show an initial categorization of the triggers that occur
in the MDEE and (possibly) cause an application migration. We
recognize that the requirements that cause these triggers (such
as changing market requirements or strategic business changes)
are important. For instance regulatory requirements lead to
market requirements which can lead to model changes (when

the regulations are part of the model) or to runtime environment
changes (when the regulations influence technical decisions).
However, due to scope restrictions these are not discussed at
this point. We discuss three of the identified triggers and a
possible migration strategy as examples.

The first and maybe most essential trigger is the change of
a model by the modeler. The changed model is processed to
produce a changed application package, and this application
package needs to be redeployed in order to upgrade the
application instance. The change of the model could also be
triggered by a meta-model change or a change to the modeling
environment. In the last two cases, all existing models could
be changed instead of a single model.

A second trigger is a change to the transformation envi-
ronment. Whenever the model transformations are changed,
existing models need to be reprocessed to produce updated
application packages. Again, those updated packages need to
be redeployed in order to upgrade the instances.

The third trigger that we discuss as an example is a change
to the runtime environment. When a change to the runtime
environment causes changes to the application instance, the
management environment also needs to change. Therefore
the application needs to be migrated, in fact, all deployed
applications need to be migrated.

V. INTEGRATING THE MICROSERVICE ARCHITECTURE
STYLE

A second solution approach that we are focusing on is
the integration of the microservice architecture style. We
believe that this architecture style makes it possible to achieve
fine-grained incremental migration. The integration of this
architecture style manifests itself in two ways.

First of all, the runtime environment should be able to
host distributed microservices. The benefits of this are an
improved upgradability, scalability, resilience, and resource
sharing. The improved upgradability is the most important:
the possibility of updating a single service without affecting
the other services. The microservices make it possible to do
fine-grained migrations.

While not necessary, we believe that this style needs to
percolate all the way through to the meta-model. When
the engineers enforce thinking in clear boundaries, smaller
independent model elements will arise in the meta-model.
These smaller model elements again help to transform the
model into microservices.

Second, the transformation environment should consist of
independent microservices. This enables incremental transfor-
mation of the model through the pattern Incrementality by
traceability as described by Varré [12].

VI. DATA MIGRATION IN EVENT STORES

In earlier work (Overeem et al. [13]) we researched data
conversion in event sourcing and proposed a framework
to execute these conversions. Event sourcing is a software
architecture pattern in which not the current state of an
application is stored, but every change leading to the current

state is stored as a log of changes. These events can be used
to derive the current state, but they can also show how that
state was reached. Common in event sourced systems is the
usage of multiple data models. The first data model is the event
store, the store with all state changes. It is the most important
data model, and recognized as the source of truth for the state.
The other data models (which can be as many as required) are
derived from these events. Examples are for instance:

o a relational data model with the current state of the
application,

o a full text search index, and

« a timeline showing the history of certain objects.

Migration of applications in an MDEE do not only impact
the application, but also the application state. The data that
is stored by the application might need to be converted to
conform to the new desired state. We believe that adopting event
sourcing in the runtime environment of the MDEE simplifies
data migration. In event sourced systems only the events need
to be transformed, because all other data models can be derived
from these events. We believe that in many scenarios these
events do not require migration, and thus data migration in
MDEE:s is less complex when using event sourcing.

VII. RELATED WORK

Meijler et al. [14] research fine-grained evolution for gener-
ated applications. However, they take the viewpoint of a single
application, instead of a multi-tenant MDEE with multiple
applications. The integration of the model environment and
the runtime environment is seen by Meijler et al. [14] as
crucial to achieve fine-grained evolution. The solution they
descibe is focused on Model-Driven Architecture (MDA) and
the JVM environment. We propose a separate management
environment instead of a tight integration of the model and
runtime environment. Our approach is less coupled to specific
technology or meta-models.

Bruneliere et al. [15] propose Modeling as a Service (MaaS),
the synergy of cloud computing and MDE. The research agenda
they propose focuses on bringing (parts of) the MDEE to the
cloud, such as the modeling environment and the transformation
engine. The (continuous) migration of resulting applications
is not mentioned. Popoola et al. [16] survey different MDE
tools and if they are capable of delivering MaaS functionality.
This research too focuses on the modeling and transformation
functions of the MDEE.

Scalable MDE is researched by Rajbhoj and Kulkarni [17],
Kolovos et al. [18], Cuadrado and de Lara [19]. Rajbhoj
and Kulkarni [17] focuses on the scalability of modeling:
collaboration and model management. Kolovos et al. [18§]
define a research agenda for scalable MDE, in which they
focus on language design, transformation, collaboration, and
persistence. Cuadrado and de Lara [19] specifically research
model transformations, and how they can be made streaming.

Our solution proposes integration of the microservice ar-
chitecture in the MDEE. Sorgalla et al. [20] discuss how
microservices can be generated from MDE platforms. Their

research group has published more related research: Diepen-
brock et al. [21], Rademacher et al. [22], Wizenty et al. [23].
They focus on the team organization and autonomy.

VIII. CONCLUSION

This paper discusses the research that we are conducting
on continuous migration of applications. This challenge is
prominent in MDEEs that are used to develop and execute
ESAs. The promises offered by MDEEs for ESAs (increased
quality, productivity, and flexibility) are only delivered when
the challenge of continuous migration is solved. We discussed
three solution approaches.

First of all, a categorization of migration triggers including
possible migration strategies. This categorization increases the
understanding of the challenge. Optimized strategies can be
developed when the challenges are clear.

Second, the integration of the microservice architecture
style in the MDEE makes fine-grained incremental migration
possible. The runtime environment benefits from loosely
coupled microservices, because it increases scalability and
flexibility. Instead of re-deploying the complete application on
every migration trigger, the microservices allow to update only
part of the application.

Finally, the adoption of event sourcing in the runtime
environment removes complexity from the data migration
challenge. The essential characteristic of event sourcing is
that every state change is stored as an event. Data models used
to present the state of the application are derived from these
events. As a result of this approach, these data models are
volatile and can be rebuild when needed. These data models
thus do not require migration.

These three solution approaches are based on an ongoing
case study at AFAS Software. They form the hypotheses that
direct our research. These three solution approaches tackle the
challenge of continuous migration from different angles.

REFERENCES

[1] V. G. Diaz, E. R. N. Valdez, J. P. Espada, b. C. P. G.
Bustelo, J. M. C. Lovelle, and C. E. M. Marin, “A
brief introduction to model-driven engineering,” Tecnura,
vol. 18, no. 40, pp. 127-142, 2014.

[2] J.-P. Tolvanen and S. Kelly, “Model-Driven Development
Challenges and Solutions - Experiences with
Domain-Specific Modelling in Industry,” Proceedings

of the 4th International Conference on Model-
Driven Engineering and Software Development,
no. January, pp. 711-719, 2016. [Online].

Available: http://www.scitepress.org/DigitalLibrary/Link.
aspx?doi=10.5220/0005833207110719

[3] R. F. Paige and D. Varré, “Lessons learned from
building model-driven development tools,” Software
& Systems Modeling, vol. 11, no. 4, pp. 527-539,
2012. [Online]. Available: http://link.springer.com/10.
1007/s10270-012-0257-9

http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005833207110719
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005833207110719
http://link.springer.com/10.1007/s10270-012-0257-9
http://link.springer.com/10.1007/s10270-012-0257-9

(4]

(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

T. Clark and P. A. Muller, “Exploiting model driven
technology: A tale of two startups,” Software and Systems
Modeling, vol. 11, no. 4, pp. 481-493, 2012.

M. Fowler, Patterns of Enterprise Application Architec-
ture. Addison-Wesley, 2002.

Gartner, “Enterprise Application Software,” 2012.
[Online]. Available: https://www.gartner.com/it-glossary/
enterprise-application-software

A. W. Brown, “An introduction to Model Driven
Architecture,” The Rational Edge, pp. 1-16, 2004.
[Online]. Available: http://www.ibm.com/developerworks/
rational/library/3100.html

C. Krueger, “Easing the Transition to Software Mass
Customization,” in International Workshop on Software
Product-Family Engineering. Springer, 2002, pp. 282—
293. [Online]. Available: http://link.springer.com/10.1007/
3-540-47833-7{_}25

M. Overeem, S. Jansen, and S. Fortuin, “Generative
versus interpretive model-driven development: Moving
past ‘It depends’,” in Communications in Computer and
Information Science, vol. 880, 2018, pp. 222-246.

R. van Rozen and T. van der Storm, “Toward live domain-
specific languages: From text differencing to adapting
models at run time,” Software and Systems Modeling, pp.
1-18, 2017.

J. Kubelka, R. Robbes, and A. Bergel, “The road
to live programming,” Proceedings of the 40th
International Conference on Software Engineering -
ICSE 18, pp. 1090-1101, 2018. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3180155.3180200

D. Varrd, “Patterns and styles for incremental model
transformations,” in CEUR Workshop Proceedings, vol.
1657, 2016, pp. 41-43.

M. Overeem, M. Spoor, and S. Jansen, “The Dark
Side of Event Sourcing: Managing Data Conversion,” in
IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2017, pp. 193—
204.

T. D. Meijler, J. P. Nytun, A. Prinz, and H. Wortmann,
“Supporting fine-grained generative model-driven evolu-
tion,” Software & Systems Modeling, vol. 9, no. 3, pp.
403-424, 2010.

H. Bruneliere, J. Cabot, and F. Jouault, “Combining
Model-Driven Engineering and Cloud Computing,” in
Modeling, Design, and Analysis for the Service Cloud-
MDA4ServiceCloud’10: Workshop’s 4th edition (co-
located with the 6th European Conference on Modelling
Foundations and Applications-ECMFA 2010), 2010.

S. Popoola, J. Carver, and J. Gray, “Modeling as a service:
A survey of existing tools,” CEUR Workshop Proceedings,
vol. 2019, pp. 360-367, 2017.

A. Rajbhoj and V. Kulkarni, “Large scale model-driven
engineering for a multi-site team-Experience report,” Pro-
ceedings - Asia-Pacific Software Engineering Conference,
APSEC, no. 2, pp. 123-128, 2013.

D. S. Kolovos, M. Tisi, J. Cabot, L. M. Rose,

N. Matragkas, R. F. Paige, E. Guerra, J. S. Cuadrado,
J. De Lara, I. Rath, and D. Varrd, “A research
roadmap towards achieving scalability in model driven
engineering,” Proceedings of the Workshop on Scalability
in Model Driven Engineering - BigMDE 13, pp. 1-10,
2013. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2487766.2487768

J. S. Cuadrado and J. de Lara, “Streaming model trans-
formations: Scenarios, challenges and initial solutions,”
in International Conference on Theory and Practice of
Model Transformations. Springer, 2013, pp. 1—-16.

J. Sorgalla, F. Rademacher, S. Sachweh, and A. Ziindorf,
“On Collaborative Model-driven Development of
Microservices,” in MSE Workshop @ STAF2018, 2018, pp.
1-8. [Online]. Available: http://arxiv.org/abs/1805.01176
A. Diepenbrock, F. Rademacher, and S. Sachweh, “An
Ontology-based Approach for Domain-driven Design of
Microservice Architectures,” INFORMATIK 2017, no.
September, pp. 1-12, 2017.

F. Rademacher, J. Sorgalla, and S. Sachweh, “Challenges
of Domain-Driven Microservice Design,” IEEE Software,

p- 8, 2018.

P. Wizenty, J. Sorgalla, F. Rademacher, and
S. Sachweh, “Magma: Build Management-based
Generation of Microservice Infrastructures,” Pro-
ceedings of the I11th European Conference on
Software Architecture Companion Proceedings -
ECSA 17, pp. 61-65, 2017. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=3129790.3129821

https://www.gartner.com/it-glossary/enterprise-application-software
https://www.gartner.com/it-glossary/enterprise-application-software
http://www.ibm.com/developerworks/rational/library/3100.html
http://www.ibm.com/developerworks/rational/library/3100.html
http://link.springer.com/10.1007/3-540-47833-7{_}25
http://link.springer.com/10.1007/3-540-47833-7{_}25
http://dl.acm.org/citation.cfm?doid=3180155.3180200
http://dl.acm.org/citation.cfm?doid=2487766.2487768
http://dl.acm.org/citation.cfm?doid=2487766.2487768
http://arxiv.org/abs/1805.01176
http://dl.acm.org/citation.cfm?doid=3129790.3129821

	Introduction
	Model-Driven Engineering Environments
	Requirements for Continuous Migration
	A Categorization of Migration Triggers
	Integrating the Microservice Architecture Style
	Data Migration in Event Stores
	Related Work
	Conclusion

