®

Check for
updates

Generative versus Interpretive
Model-Driven Development: Moving Past
‘It Depends’

Michiel Overeem!® Slinger Jansen?, and Sven Fortuin?

! Department of Architecture and Innovation,
AFAS Software, Leusden, The Netherlands
m.overeem@afas.nl
2 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
{slinger. jansen,s.e.fortuin}@uu.nl

Abstract. Model-driven development practices are used to improve
software quality and developer productivity. However, the design and
implementation of an environment with which software can be pro-
duced from models is not an easy task. One part of such an environ-
ment is the model execution approach: how is the model processed and
translated into running software? Experts state that code generation
and model interpretation are functionally equivalent. However, a survey
that we conducted among several organizations shows that there is a
lack of knowledge and guidance in designing the execution approach. In
this article we present the results of a literature study on the advan-
tages of both interpretation and generation. We also show, using a case
study, how these results can be utilized in the design decisions. Finally,
a decision support framework is proposed that can provide the guid-
ance and knowledge for the development of a model-driven engineering
environment.

Keywords: Model-driven development - Model-driven architecture
Software architecture - Code generation
Run-time model interpretation + Decision support

1 Introduction

Model-driven development (MDD) is used by software producing organizations
(SPOs) to improve software quality and developer productivity. According to

This work is a result of the AMUSE project. See https://amuse-project.org for more
information. An earlier version of this work was published as Overeem and Jansen
[1]. This article adds the motivating survey that we have conducted among sixteen
organizations. The literature study is extended with literature published since the
original study. The case study is expanded with more in-depth observations on the
decision making process.

© Springer International Publishing AG, part of Springer Nature 2018

L. F. Pires et al. (Eds.): MODELSWARD 2017, CCIS 880, pp. 222-246, 2018.
https://doi.org/10.1007/978-3-319-94764-8_10



Generative versus Interpretive Model-Driven Development 223

Diaz et al. [2] these improvements in quality and productivity are achieved
because a well designed model raises the abstraction level of the software devel-
opment process. The abstracted model allows for an expressiveness that can
be more concise than general-purpose programming languages. Domain-specific
modeling improves that even further by catering the model to a certain domain.
The expressiveness causes both the increase of productivity (more can be done
with less) and the quality (there will be fewer mistakes, because there is a smaller
model). The models can be used in different manners, Brown [3] shows a mod-
eling spectrum with, among others, roundtrip engineering, model-centric, and
model only. We are especially interested in the model-centric approach: the model
is the source of truth and the application follows from the model. The model-
centric approach is implemented in Model Driven Engineering Environments
(MDEE), an environment that is similar to an Integrated Development Envi-
ronment (IDE) used for software development. Modelers create models using
modeling languages in a specific modeling environment, just as developers write
software in their IDE. These models are translated according to well defined
semantics, into an application. Together these components (from modeling envi-
ronment up to and including the application) form the MDEE (visualized in
Fig.1). The translation process that reads the model and produces an applica-
tion is defined as the model execution approach, and implemented in the model
execution engine.

model
execution
engine

modeling

modeler  [—interact N
environment

outputinput fol output
Legend

External interactor @

Fig. 1. A model-driven engineering environment enables a modeler to create a model in
a modeling environment. The model is subsequently translated by the model execution
engine (using a model execution approach) into an application.

Our experiences are that the development of a MDEE is by no means an
easy task. The initial investment is large, because there are many technical chal-
lenges. One of these technical challenges that is of particular interest to us, is the
design and development of the model execution approach. SPOs can choose for
code generation, run-time interpretation, or a hybrid form that combines both
approaches (Fig.2). As in every design challenge, there are numerous decisions
to make (with their specific trade-offs) that influence the overall quality of the
MDEE.



224 M. Overeem et al.

Just like any other (architectural) design question, the design questions for
the model execution approach can be answered with “it depends”. In this article
we show that the design depends on desired quality characteristics and the con-
text of the MDEE. Moreover, we show how SPOs can take these characteristics
into account. It might be regarded as an implementation detail, but the model
execution approach, like any other component in the system has its influence
on the quality characteristics (such as run-time behavior and maintainability) of
the whole system. As in any system that consists of multiple components work-
ing together, the model execution approach should not be designed individually
(i.e., not be out of the context of the MDEE). The influence of the model exe-
cution approach is similar to, for example, the influence of a specific database
on the quality of a data intensive system. While users may not see a difference
in functionality between two different databases, the quality of the system is
affected by it, for example, in terms of performance, stability, and availability.
SPOs can deliver the same functionality, whether they choose code generation
or run-time interpretation, but the quality of the MDEE will differ significantly.

The main research question of this article is How can SPOs make an informed
decision between a generative or interpretive model execution approach?. In
Sect. 2 we explain the different model execution approaches in more depth, and
discuss the work already done in this area. We motivate our research question in
Sect. 3 by presenting the results of a survey among SPOs applying model-driven
development. This survey shows that there is no “one size fits all” solution. It also
shows that many SPOs do not have a clear rationale for the model execution app-
roach that is used. Therefore, decision support and clear guidance is necessary to
improve the overall design and implementation of MDEEs. Section4 discusses
the results of the literature study that we have performed on the advantages
and disadvantages of the generative and interpretive approach. There are many
hybrid model execution approaches that combine the generative and interpre-
tive approach. We show the preference for the two pure approaches in terms of
percentages. These percentages can be used by the SPO to find the right balance
in designing their own hybrid model execution approach. Section5 describes a
case study, in which we observe the design of a fitting model execution app-
roach. We conclude that the design of a fitting model execution approach is not
detached of the overall design of the MDEE. We reflect on the case study and our
observations in Sect. 6. We observed three general arcas of design decisions that
influence the model execution approach, and we present a design support frame-
work based on the case study. Finally, Sects. 7 and 8 evaluates and discusses the
study, and presents our conclusion respectively.

2 Context and Related Work

There are several model execution approaches, many of them are a hybrid form
of the two pure approaches. We discuss the two pure approaches, and describe
two groups of hybrid approaches, shown in Fig.2. The first pure model exe-
cution approach is code generation. During code generation a model is parsed,



Generative versus Interpretive Model-Driven Development 225

__________________________________________
: Design-time : :- Build-time | : Run-time : Legend
1
_________ e S SO R
- I -
{ Generative : | : | : [
| | : \ I | : : Process
1
i | Model | | L [
! 1 T [
! | | | o L
| 7 Y | [N 1
! | | | [ |
| \ [
R Fem—————— [k m e [ -r-
[mm——————— e e R et ik ot -t
| Interpretive ! | ! | ! — [
| | | | 1 | Application o
1 | | | [ —_—
| 1
! : Model I : : Interpreter [ Connect artefacts
| H ! \ (B [ toprocesses as
| ! __ : | N Pz : : input/ output
! I H I Ll L
e - F———————— e i -r-
jmmm—— by T et —F-
| Simplification : | : | : — [
! | | | [ | |
| I
| | |
| ]
i A Y [
! _~ Y1
! I I [
| [
e - Fo——————— e et :— R e -r-
fo———————- e Ay k- =1
| Mix-and-match ! [ ! ! [
| : : : | : Application : :
| I
| | | | (]
: | Model Generator : [
I H 1 1 1
! | | [
| | | | 1 | [
! I | Yo "
\ L [
| T 3 T Il
I

Fig. 2. The four main types of execution approaches are generation, interpretation,
simplification, and mix-and-match. The darker boxes show the execution process. With
the two hybrid approaches, the execution process can be split up and divided between
build-time and run-time. The model is created at design-time, but is used at build-time
and/or run-time.

interpreted and transformed into source code. The generated source code gen-
erally results in running software. This approach is not exclusive to MDD, and
is formalized and defined by Czarnecki and Eisenecker [4] as Generative Pro-
gramming. According to their definition, it is a paradigm based on modeling
facilities to automatically manufacture customized and optimized intermediate
and/or end-products. Applying generative programming within MDD results in
generative MDD. Although nothing in the definition states that the output can
not be changed manually before the final software product is delivered, we only
regard full code generation that does not need manual changing the generated
code. This does not imply that every part should be generated; the generated
code can be combined with frameworks or base libraries, as pointed out by Kelly
and Tolvanen [5].

The second pure model execution approach is run-time interpretation, or
interpretive MDD. The idea is similar to code generation, but the timing is
different: the parsing and interpretation of the model are done at run-time.
There is no need to first generate source code, the running software executes its
functions directly based on the model. In this case the model execution approach
becomes part of the application, the application interprets the model before
offering functionality based on the model. Further manual coding is not possible
with this approach, because there is no time to intervene in the execution of the



226 M. Overeem et al.

software. However, as we see in Sect. 3 it is possible to combine custom code with
an interpreter. The model needs to be deployed along with the running software,
while in the generative approach, the model is not part of the running software.

These two approaches form the extremes of the execution spectrum, and
many hybrid forms are possible. We see two groups of hybrid approaches. The
first group is simplification: a model is transformed into a second model before
deploying it for run-time interpretation. In this approach there is both a gen-
eration step and an interpretation step, instead of generating source code. The
generation step transforms the model into a second model that can be inter-
preted at run-time. This can be achieved by transforming high-level concepts to
low-level concepts, or by transforming into a model with fewer constructs. The
results of this approach are manifold: (1) The interpreter is easier to develop
and better maintainable, because it has to support fewer constructs. (2) The
translation is less complex, so the interpreter is faster. And finally, (3) the inter-
preter becomes more reusable, because there can be many different models that
can be transformed into the intermediate model. This approach is also used by
programming languages that compile into an intermediate language that is in
turn interpreted by a runtime environment, such as the approach Meijler et al.
[6] discuss. They generate Java source code, but use a customized class loader
that acts as a run-time interpreter.

The second group of hybrid approaches is a match-and-miz approach: some
parts of the platform use code generation, while others use interpretation. This
approach can be used both from an architectural perspective as well as from a
model perspective. The MDEE could use a different approach in different com-
ponents, for instance the user interface could be interpreted, while the database
access layer is generated. Different approaches could also be chosen based on
model dynamics, where the more stable parts can be generated into source code
and the more dynamic parts are interpreted.

Figure 2 shows the four described approaches, marking out the time at which
the execution takes place. In the generative approach, the execution is done at
build-time, as opposed to the interpretive approach in which the execution takes
place at run-time. Both the simplification and mix-and-match approach show
that they have part of the execution at build-time, and part at run-time. This
makes them flexible, because SPOs can decide how much happens at what time.
These hybrid approaches can also be combined, the mix-and-match approach can
combine the interpretive, generative, and simplification approach into a single
encompassing model execution approach.

There is some work done on the challenge of designing a fitting model execu-
tion approach discussed in this article. A multi-criteria analysis of the different
approaches is performed by Batouta et al. [7] with as goal the support of the
decision-making. Their analysis results in a decisive statement about the best
approach (based on their list of ten criteria). However, they do not take the con-
text of the MDEE into account. Fabry et al. [8] address a number of advantages
regarding the different model execution approaches, but they do not give any sup-
port for the decision-making. Zhu et al. [9] researches the decision-making within



Generative versus Interpretive Model-Driven Development 227

MDD applied to game development, however, he only looks at other architectural
decisions than the model execution approach within a MDEE. Code generators
and the interaction with developers is researched by Guana and Stroulia [10],
only without making a comparison with the interpretive approach. All of the
mentioned work is incorporated in the literature study in Sect. 4.

The design of software and their architectures is a thoroughly researched
topic. Capilla et al. [11] show how design decisions play a role in software archi-
tecture, and that it is important to capture them. Jansen and Bosch [12] define
“software architecture as the composition of a set of architectural design deci-
sions”, and formalize this in the Archium approach which is further extended
in Ven et al. [13]. Svahnberg et al. [14] present a decision process that, based
on desired quality attributes, supports a SPO in finding the architecture variant
that shows the most potential. We combine the definition of software architecture
as a set of design decisions with the approach to support a decision with quality
attributes, and apply this to MDD. Because of this we are able to uncover the
rationale of either a generative or interpretive approach, and support SPOs in
their design process.

3 How SPOs Design and Develop MDEEs

We interviewed twenty-two product experts of sixteen different SPOs that
develop MDEEs. All of the experts had either five or more years experience
with the product or were working with the product since its start. They served
in different roles at the time: twelve of them as chief executive, the others in
different roles such as lead developer, business developer, and sales manager.
These experts were asked questions on the design and implementation of their
company’s MDEE. The SPOs were identified by an Internet search, exploiting
our network, and asking interviewed product experts.

We identified 36 qualifiable case companies with representatives in Belgium,
The Netherlands, or Luxembourg. For sixteen companies we found experts that
were willing and able to cooperate in our research!. The companies differ in
size (ranging from ten employees to thousands of employees), in market (some
operate only in The Netherlands, while others operate worldwide), and maturity
(some MDEEs are almost twenty years old, while others only two years). After we
processed the answers, every expert had the opportunity to correct any mistaken
interpretations. The answers are summarized in Table 1.

The first topic of interest is the target users of the MDEE and its modeling
language. We asked the experts what the target group of users for the MDEE
are, and what kind of expertise they expect from them. Their answers resulted
in four categories of users:

! Some needed to be excluded due to confidentially issues or the lack of (technical)
knowledge.



228

M. Overeem et al.

Table 1. Anonymized results of the survey among SPOs. The target users and the
model execution approach are shown, a long with the company size (in terms of number
of employees) and maturity (in terms of number of development years). The cells
marked with an * identify MDEEs that support two distinct web platforms.

S = a4 o F 10 O

SISSIT SIS IS

AR AR AR AR A AR R AR AR

NN NN MINNNINnNnn NNn
Company size
0-50 employees e o 00 ° e o o o |5%
100-500 employees ° e o0 ° 31%
+500 employees ° ° 13%
Development years
0-5 ° ° ° 19%
6-15 o ° ° o o |37%
+15 oo oo ° ) 44%
Target platforms
Web e 0000 0" 0000 00 0 0" e o|100%
Desktop e o ° 19%
Mobile ° 6%
Target users
Laymen ° ° ° ° ° 32%
Technical business users oo o ° oo oo ® |56%
SQL experts ° 6%
Developers L) ° o ° ® ||37%
Model execution approach
Interpretation eoe o0 o o ° e o o 0 |09%
Generation o e ° ° o oo o e |(50%
Simplification ° ° 13%
Match-and-mix o ° ° ° ® ||38%

Laymen are people without any technical knowledge.

Technical business users are those that have some knowledge of software
development, but are no developers. They are expected to have knowledge
about software concepts such as data models, and data types. An informal
description would be people more knowledgeable than layman, but less knowl-
edgeable than developers.

SQL experts are a specific set of users that are able to write SQL queries.
They are not able to write software in other programming languages. This
specific category was added after the review with SPOy, because the category
developers did not match their target description.

Developers are those users that are able to write software in a programming
language. MDEEs that target developers expect them to be familiar with
IDEs and other programming concepts.

A third of the SPOs specifically target laymen, while the others require some

form of technical knowledge of their users. There is no correlation found between



Generative versus Interpretive Model-Driven Development 229

the model execution approach and the targeting of laymen. In the case study
we conducted (see Sect.5) we also observe the design of a MDEE that targets
laymen. A third of the SPOs that target technical business users also target
developers, their MDEEs support custom programming, because the model is
not able to express al required functionality. The six SPOs that target developers
all use an interpretive approach, four of them also use code generation.

Five SPOs (SPO2, SPOg, SPOg, SPO;3, and SPO¢) state that a reason
for their model execution approach is a certain required build-time behavior.
As an example, the expert of SPOq¢ states “You can’t generate code again in
an end application that is already generated. To allow workflow modeling in the
end application, we were forced to make use of an interpretative solution.”. All
of the five mentioned SPOs explain that users are able to change the model,
and expect that their changes are (near) instantly applied and visible in the
application. Four of them use run-time interpretation, while the other one uses
a simplification approach. The SPOs that use a generative approach did not
mention such a requirement for build-time behavior.

All of the SPOs target a web platform, meaning that they support at least
back-end and front-end applications. Three of the SPOs, however, support two
different back-end platforms, one also supports mobile applications, and two
others also support native desktop applications. Effectively, we can conclude
that all SPOs support multiple platforms. The interpretive approach is motivated
three times by the advantage of platform independence, or portability.

We have found little reasoning behind the implemented approaches, one
expert even stated “We just had to go with one of the two.”. An expert of SPOg
refers to an advantage in portability for interpretation, a correlation that we will
see again in Sect.4: “By interpreting the Ul and generating the remaining parts
of the application, we are able to share models between different platforms.”. A
reference to resource utilization is made by an expert of SPO14: “We don’t want
to regenerate an entire database every time the model changes, because this can
potentially cause a lot of problems with data migration.”. The interviews show
that all approaches are used, and nearly half of them use a hybrid form. This
supports our claim that the model execution approach depends on many factors
and is context specific. We cannot give a simple answer such as “web platforms
should use an interpreter”, Table 1 shows that other approaches are used for web
platforms as well. Like Capilla et al. [11] we believe that it is important for SPOs
to document the rationale behind important architectural decisions. In the next
Section we will show that the model execution approach influences the quality
of the MDEE, and that it is important to capture the rationale of the design.

4 Quality Characteristics of Model Execution Approaches

We started the literature study by executing a literature review on the advan-
tages and disadvantages of both code generation and run-time interpretation.
The literature review was done with the snowballing approach as described by
Wohlin [15]. The snowballing approach uses references between articles as a



230 M. Overeem et al.

means to discover other relevant literature. The first step is to select a start set
from which the references can be followed. This approach was chosen because
the research areas to be covered in this review are broad. We expected litera-
ture from the MDD field as well as Domain-Specific Language engineering and
compiler design. The second reason was that the literature that we had found in
earlier explorations never mentioned the advantages or disadvantages directly,
but they where often hidden in implementation details.

Our start set was created by earlier informal explorations with the Google
Scholar engine, using “interpretation versus code generation” and “interpreta-
tion vs. code generation” as keywords. We selected five articles as the start
set: van Deursen et al. [16], Meijler et al. [6], Mernik et al. [17], Tankovié [18],
and Voelter [19]. These papers represent the different research areas and have a
broad research question, resulting in many references (both backwards and for-
wards). With this start set we executed several steps, following both backward
and forward references. The found literature was included when it mentioned
advantages or disadvantages on model execution approaches, and we ended up
with 35 studies.

The literature was classified using the ISO standard 25010:2011 for software
product quality [20]. This standard is used to asses the quality of software sys-
tems, and matches our intent to asses the quality of MDEEs. The ISO standard
consists of eight categories with 31 characteristics. We found evidence for differ-
ences in quality fulfillment for five out of these eight categories, summarized in
Table 2. The summary of all the found evidence is presented in Table3. There
was no evidence found for the categories functional suitability, usability, and reli-
ability. The first two categories match the statement of Stahl et al. [21] “code
generation and model interpretation are functionally equivalent”. For category
reliability no evidence was found as well, which was expected. Reliability is the
degree to which the system performs its functions under certain conditions. We
assume the generative and interpretive approach to be functionally equivalent,
and in both approaches it is possible to build a reliable functioning system.

Table 3 presents every mention of an advantage or disadvantage in relation
to its source and the quality characteristics. A G stands for a preference of
generation over interpretation, while an I stands for the opposite. When we
encountered statements on the two approaches without a preference, we marked
the corresponding cell with both G and I. The total number of preferences
are used to calculate the percentage of the two alternatives with respect to
the quality characteristic. The evidence we found is presented in relation to
the generative and interpretive approach. This does not mean that the hybrid
approaches are not mentioned by authors (as discussed in Sect. 2). However, the
advantages and disadvantages we found were always in terms of the generative
and interpretive aspects of an approach.



Generative versus Interpretive Model-Driven Development 231

Table 2. The categories and characteristics from the software product quality model in
ISO standard 25010:2011. For the emphasized items we found evidence of a preference

for either code generation or model interpretation.

Category Characteristics

Functional Functional completeness, Functional correctness, Functional

suitability appropriateness

Performance Time behaviour, Resource utilization, Capacity

efficiency

Compatibility Co-existence, Interoperability

Usability Appropriateness recognizability, Learnability, Operability,
User error protection, User interface aesthetics, Accessibility

Reliability Maturity, Availability, Fault tolerance, Recoverability

Security Confidentiality, Integrity, Non-repudiation, Accountability,
Authenticity

Maintainability | Modularity, Reusability, Analysability, Modifiability,
Testability

Portability Adaptability, Installability

4.1 1ISO: Performance Efficiency

The characteristics in the category Performance efficiency describe the perfor-
mance of a system: how the system utilizes resources, responds to requests, and
meets the capacity requirements. For two of the characteristics evidence was
found.

Time Behavior - The first characteristic for which we found evidence is the
time behavior of the system. For MDEES, this is a special characteristic, because
there are two main use cases for which the response and processing time is
important. The run-time time behavior describes the response time of the func-
tionality offered in the application. However, the second important use case for
which response time is important, is the translation from model to application.
When a generative approach is used, the model execution approach takes up time
between model changes and software updates. When an interpretive approach
is used, there is no time between model changes and software updates, because
the execution happens during execution of normal system functions. These two
distinct use cases are confirmed by the literature that we studied: we found com-
ments in relation to both approaches. Therefore this characteristic is split into
two separate characteristics. Both build-time time behavior and run-time time
behavior are used as two separate characteristics in our study.

Twenty-two out of the 32 papers mention the time behavior characteristic, it
is one of the most frequently commented characteristics. Because of the possibil-
ity of doing upfront analysis during code generation, more efficient code can be
generated. On the other hand, interpreters add overhead to run-time functional-
ity and thus are slower. While that is the general sentiment, Klint [34] remarked



232 M. Overeem et al.

Table 3. The results of the literature review and basis for the ranking of the two
approaches. G corresponds with a preference for code generation over interpretation.
I identifies where a paper shows a preference for interpretation over generation. G 1
indicates papers did not present a preference, but did give advantages or disadvantages.

$5 ¢
223 |, 2
82 3 BIf 2
s o o g |[= = >
82 o g[8 > = =
SE: Bz 28 3F50: EREE
Sz zI8: B85 s 85¢%
L m x|8B0 EBOLB=E<=E & LB<=
Batouta et al. [7] G I G G I G G
Brady and Hammond [22] G I 1 1 1
Cleenewerck [23] G GI
Consel and Marlet [24] G I 1 1
Cook et al. [25] G G I G
Cordy [26] I I
Czarnecki and Eisenecker [4] G 1
Daz et al. [2] G 1 I G
Ertl and Gregg [27] GI I I 1
Fabry et al.[8] G G 1 1
Gaouar et al. [28] G 1
Gregg and Ertl [29] G GI I T 1 I
Guana and Stroulia [10] I 1T 1
Hinkel et al. [30] 1
Inostroza and Van Der Storm [31] 1
Jones et al. [32] G I T G
Jrges [33] I I I
Klint [34] Gl G I T GI |
Meijler et al. [6] G I G G G G
Mernik et al. [17] 1 I G 1
Ousterhout [35] G 1 1 G
Pessoa et al. [36] G 1
Riehle et al. [37] 1
Romer et al. [38] Gl
Schramm et al. [39] 1
Stahl et al. [21] 1 G I 1T I
Sundharam et al. [40] 1 1 I 1
Tankovi [18] G 1 G I 1
Tankovi et al. [41] G 1 G I 1
Thibault et al. [42] G I
Thibault and Consel [43] 1 1
Varr et al. [44] G 1 I
Voelter [19] G I G G G GG
Voelter and Visser [45] G 1 GG G
Zhu[46] G I G G
% in favor of generation 88 0 87.5 0 0 100 2020 15 55.5 3050
% in favor of interpretation 12 100 12.5) 100 100 0 80 80 85 44.5| 7050




Generative versus Interpretive Model-Driven Development 233

that the overhead of interpreters will diminish with the advent in hardware.
Both Ertl and Gregg [27] and Romer et al. [38] show that there is nothing that
makes interpreters inherently slow.

The reduced build times that an interpretive approach gives are an advantage,
such as enabling of agile development and better prototyping. This advantage is
stated by Consel and Marlet [24] and Riehle et al. [37] among many others.

Resource Utilization - The general comment that code generation results in
improved run-time behavior can be extended to resource utilization as well. Mei-
jler et al. [6] state that generators can optimize for more than run-time behavior
only, something that is useful in for instance embedded systems and game envi-
ronments. A difference can also be seen in how generators or interpreters compete
with the running application for resources. A generator might use more memory,
but could be running on different hardware than the application. Interpreters are
part of the application, so it could be hard to run them on different hardware.
Gregg and Ertl [29] comment that interpreters often require less memory, but
confirms the competition for resources with the application.

Another view on resource utilization is the data storage for an application.
Meijler et al. [6] point out that the interpretive approach often leads to a less opti-
mal data schema. The schema might depend on the model and thus can change
at run-time, therefore, the schema has to be flexible enough. This requirement
often conflicts with optimizations that might be achievable otherwise.

4.2 ISO: Compatibility

The category Compatibility contains characteristics that express the quality of
co-existence and operability of the system.

Co-existence - Only two papers contain evidence for a preference between
interpretation or generation based on this characteristic. Gaouar et al. [28] share
their experiences on making dynamic user interfaces and point out how the
interpretive approach enabled them to use platform native elements. A different
side is shown in Jorges [33]: the late binding that interpretation offers makes it
possible to re-use the same application instance for different tenants.

Interoperability - Interpreters have access to the dynamic context of the appli-
cation at run-time. Fabry et al. [8], Ousterhout [35], and Varré et al. [44] state
this as a preference for interpreters, because it allows them to communicate with
the application in a way that is not possible by generators.

4.3 1ISO: Security

Security describes the quality in terms of integrity, authentication, and confi-
dentiality. The literature only contained evidence for the characteristic confiden-
tiality.

Confidentiality - Tankovié¢ [18] and Tankovié et al. [41] describe the models
used in a MDEE as intellectual property. The interpretive approach exposes



234 M. Overeem et al.

the model to the application, making it more vulnerable for exposure. In the
generative approach the models do not need to be shipped which makes that
approach more secure.

4.4 ISO: Maintainability

Maintainability is an important aspect in the quality of software products. Char-
acteristics in this category that were mentioned by literature comment on the
testability, modifiability, analysability, and modularity of the platform.

Modularity - Most literature favors interpreters over generation when looking
at the modularity characteristic. Inostroza and Van Der Storm [31] and Consel
and Marlet [24] propose solutions for modularization within interpreters. Clee-
newerck [23] is the only one who argues that generators are more preferred than
interpreters when it comes to modularization.

Analysability - An important aspect in MDEEs is the analysis of the resulting
application. It should conform to the model and the defined semantics, which is
not an easy task. When a generative approach is used, the model is translated
in a separate language, without losing the semantics of the model. Proving that
translation to be correct is hard, according to Guana and Stroulia [10]. According
to Jorges [33], the interpreter can play the role of a reference implementation,
used to document the semantics of the model. This improves the analysability
of the platform.

Debugging is partly analyzing the run-time behavior of an application.
According to Voelter [19] and Voelter and Visser [45] this process is easier in a
generative approach, because the generated application can be debugged as if it
were a normal application.

Modifiability - Many papers, Cook et al. [25] and Dfiaz et al. [2] among others,
claim that interpreters are easier to write. We conclude that easier to write
software is also easier to modify. Cordy [26] describes the process of a compiler
as being heavy-weight, making it harder to modify. Cleenewerck [23] and Voelter
and Visser [45] argue that generators give more freedom to developers, giving
them room for better solutions.

Testability - The literature was far from conclusive on the testability of both
approaches. On the one hand, interpreters can be embedded in test frameworks,
this makes them easier to test. Generators on the other hand add indirection
in the testing, because they are a function from model to code. Asserting the
correctness of the output becomes fragile when just looking at the written code,
the easiest way is to determine the correctness by running the code. Voelter
[19] and Voelter and Visser [45] prefer generation when it comes to debugging,
because the model translation can be left out of the testing.

4.5 1ISO: Portability

Portability covers the characteristics adaptability and installability.



Generative versus Interpretive Model-Driven Development 235

Adaptability - The separation between generation environment and applica-
tion environment makes the generative approach preferred according to Meijler
et al. [6], Batouta et al. [7], and Voelter [19]. The two environments can be
evolved at a different pace when adaption needed, which makes it more flexi-
ble. In an interpretive approach the whole interpreter needs to be rewritten and
although this might be easy, it is more work. However, Tankovié¢ [18], Tankovié
et al. [41], and Gregg and Ertl [29] state that porting an interpreter to a new
platform is no problem when platform independent technologies (such as pro-
gramming languages and environments that run on multiple platforms) are used.
This matches the results from Sect. 3, where three SPOs stated portability as
the rationale for the interpretive approach.

Installability - The two separated environments in the generative approach
not only have a clear advantage for adaptability, it is also an advantage with
respect to installability. Meijler et al. [6], Cook et al. [25], Batouta et al. [7], and
Voelter [19] prefer code generation because it can target any platform, it does
not constrain the target application. The initial installation is, however, not all
that is important, when the MDEE is updated, re-installations are needed too.
The interpretive approach makes re-installations less frequent, because in many
cases only the model needs to be updated. This advantage is pointed out by
Tankovié¢ [18] and Mernik et al. [17].

4.6 Utilizing the Preferences

The results of the literature study as presented in Table 3 can be used by SPOs
to design their execution approach. But before SPOs can use these results, they
have to prioritize the quality characteristics, i.e., they have to determine which
characteristics are most important for them. When priorities are assigned, the
preference for either the generative or the interpretive approach can be calculated
by the following formulas:

12 12
Pgenerative = E -Psz and Pinterpretive = E B,
i=1 i=1

The formulas summarize over all twelve characteristics ¢, and applies the prior-
ity (P;) on the corresponding preference (from Table 3) for both the generative
(G;) and the interpretive (I;) approach. All priorities add up to a total of 1,
and because for every characteristic i G; I; add up to 100%, Pyenerative and
Pinterpretive add up to 100%. The outcome shows for a certain set of priorities
what the preference for either the generative or interpretive approach is.

How the priorities are determined is not prescribed, however, in the case
study described in the next Section we will show two possibilities. The first
option is by informally giving a weight to every characteristic, dividing 100%
among the different characteristics. By doing this informally, the SPO takes the
risk of calculating a preference with inaccurate data. Therefore, we also show
a second option to prioritize the characteristics: the analytic hierarchy process



236 M. Overeem et al.

(AHP) method described by Saaty [47]. Falessi et al. [48] shows that the AHP
method is helpful in protecting against two difficulties that are relevant for this
study. The first is a too coarse grained indication of the solution. When the
priorities are determined informally it becomes easy to overlook certain char-
acteristics. The second difficulty is that there are many quality attributes that
need to be prioritized, and many attributes have small and subtle differences.
The AHP method helps by prioritizing in a pairwise manner, the priorities are
only determined relative to other characteristics.

5 Case Study

We conducted a case study by observing the design of a MDEE at a Dutch
SPO, AFAS Software. The NEXT version of AFAS’ ERP software is completely
model-driven, cloud-based and tailored for a particular enterprise, based on an
ontological model of that enterprise. The ontological enterprise model (OEM, see
Schunselaar et al. [49]) will be expressive enough to fully describe the real-world
enterprise of virtually any business. The platform initially used a generative
approach, generating many lines of C# and JavaScript. However, during the
course of 2016 a shift was put into motion towards a hybrid form with more
parts being interpreted at run-time. We took part in the discussions surrounding
this shift and observed the team while they designed and implemented parts of
the MDEE.

We already explained that the context of the MDEE influences the design of
the execution approach. This can be seen if we approach the architecture as a set
of design decisions as described by Jansen and Bosch [12] and van der Ven et al.
[13]. These decisions are made during the software development life cycle. Every
requirement is satisfied by first creating one or more solutions, from which the
SPO selects the best fitting alternative. This is done by assessing the solutions,
for instance in terms of quality, cost, and feasibility. After a solution is selected,
the preferred solution is incorporated in the existing architecture. This process
is continuous and will be repeated for every new requirement that needs to be
satisfied.

The complete architecture of a MDEE is too large to present in this paper,
therefore, we present the most important and guiding requirements and deci-
sions. These are presented in two distinct phases, to illustrate two different uti-
lizations of the results from Table 3. The requirements and decisions that form
the architecture and are input for the prioritization are summarized in Table4.

The initial requirement that guided the design of the MDEE is the envisioned
target audience for the modeling language (R1). By choosing laymen as the
target audience, it becomes possible for non-technical business users to model
their own ERP solution. This requirement is driven by years of experience in
the development of an ERP solution, and the knowledge that is accumulated in
those years. The resulting design decision is that the modeling language should
be a model with a high level of abstraction, an ontological enterprise model
(OEM) (D1). This model abstracts from the many details that are needed for



Generative versus Interpretive Model-Driven Development 237

Table 4. Summary of the requirements and decisions from the design of the MDEE.

Requirements

R1 Target audience for the modeling language are laymen

R2 Users do not manage or maintain the MDEE themselves

R3 Cost effectiveness of the MDEE is important

R4 Use a technology that the developers are familiar with

R5 The MDEE should handle the load from the existing customer base

R6 End users can change the model without intervention

Decisions

D1 Develop an ontological enterprise model

D2 Use a SaaS delivery model

D3 Use multi-tenancy to gain resource sharing
D4 The MDEE should run on the .NET runtime
D5 Deploy the MDEE as a distributed application
D6 Use a hybrid execution approach

creating software, those details are added by the platform (the generator or
interpreter) when the model is transformed. A second requirement is that the
hosting and management of the MDEE is done by the SPO (R2). Delivering
the MDEE through a Software-as-a-Service (SaaS) model is the second design
decision (D2) that satisfies requirement R2. A third important requirement is
cost effectiveness of the MDEE (R3), and multi-tenancy is one of the ways of
achieving that as stated by Kabbedijk et al. [50]. The decision for a variant of
multi-tenancy forms the last important decision (D3) of this initial phase.

After the design of the initial architecture, that solved among many other
requirements R1, R2, and R3, the execution approach is designed. At the time
of this design, the literature study as presented in Sect. 4 was not yet done. After
discussion with the team, we concluded and verified that in hindsight four qual-
ity characteristics were especially important for this phase of the development.
Run-time time behavior and resource utilization followed from the decision for
SaaS (D2) and multi-tenancy (D3). Testability and analysability were important
for AFAS to secure the quality of the new MDEE. With the data from Table 3
and the priorities that we assigned in hindsight allow us to calculate the prefer-
ence for an approach. The possible calculation is shown as an illustration. The
first two characteristics (resource utilization and run-time time behavior) are
assigned a priority (or weight) of 35%, the other 30% is split between the other
two characteristics (testability and analysability). The resulting preferences can
then be calculated by combining the priorities of the characteristics with their
weights (expressed in percentages, summing up to a total of 100%). We apply
formulas Pyenerative a0d Pipgerpretive 00 the percentages from Table3 and the
priorities, resulting in the following calculations:



238 M. Overeem et al.

Pyenerative = 0.35 * 0.88 4+ 0.35 * 0.875 + 0.15 % 0.55.5 + 0.15 % 0.20 = 0.729

Pinterpretive = 0.35 % 0.12 4 0.35 x 0.125 + 0.15 % 0.44.5 4 0.15 * 0.80 = 0.271

The outcome of the calculation matches the decision that AFAS made: their
initial execution approach was the generative approach. This initial phase of
requirements, decision making, and design of the architecture can be summarized
in three statements.

— R1 leads to D1
— R2 in the context of D1 leads to D2
— R3 in the context of D1 and D2 leads to D3

As the design of the MDEE advanced new requirements needed to be real-
ized. First of all the technology that is used to develop the MDEE was selected.
The requirement was that a technology should be used that is familiar to the
development team (R4). This fourth requirement led to the decision for the
NET runtime (D4) as the technology to develop the platform on. The next
requirement formulated expected load requirements: AFAS has a large existing
customer base that needs to be transferred to this new platform. There is an
expected load known from the existing customer base that needs to be han-
dled (R5). As a result of this requirement, the decision was made to design and
deploy the application as a distributed system (D5).

Table 5. Summary of the priorities of quality characteristics determined by applying
AHP as described by Saaty [47]. Columns Generative and Interpretive show the prefer-
ences for code generation and model interpretation from Table 3. The final preferences
are calculated with the formulas Pyenerative and Pinterpretive-

Priority | Generative | Interpretive
Run-time time behavior |0.059 0.88 0.12
Build-time time behavior | 0.278 0.00 1.00
Resource utilization 0.098 0.875 0.125
Co-existence 0.045 0.00 1.00
Interoperability 0.012 0.00 1.00
Confidentiality 0.012 1.00 0.00
Modularity 0.062 0.20 0.80
Analysability 0.023 0.20 0.80
Modifiability 0.150 0.15 0.85
Testability 0.085 0.555 0.445
Adaptability 0.155 0.30 0.70
Installability 0.021 0.50 0.50

Preference | 10.293 0.707




Generative versus Interpretive Model-Driven Development 239

The sixth requirement reopened the design of the model execution approach.
Therefore, the team decided to backtrack on the earlier decision for the genera-
tive approach. AFAS envisioned that customers are able to customize the model
without intervention from AFAS (R6). This requirement leads to other require-
ments, such as the expected turn around time between model changes and appli-
cation updates. Based on requirement R6 and the decisions D1-D5 the quality
characteristics were prioritized. Characteristics build-time time behavior, adapt-
ability, and modifiability became more important. This time the prioritization
was done by applying the AHP method: all the characteristics were pair-wise
compared and ranked according to the method described by Saaty [47]. The
results are shown in Table 5, combined with the preferences from Table 3. The
final outcome preferred interpretation over generation with 71%.

The team decided to implement a simplification approach: the OEM is simpli-
fied into a simpler model by the generator. This way the team was able to satisfy
the build-time time requirements, without sacrificing performance. Because the
MDEE itself already grew quite large, the team decided to also switch to a mix-
and-match approach. The simplification approach was first implemented in a
specific component: the messages that are past between the different parts of
the distributed system.

An architecture consists of many decisions, both large and small, both impor-
tant and non-essential. Our case study only shows the five most important
requirements. In the next Section we will reflect on the case study and derive a
proposed decision support framework for the design of a model execution app-
roach.

6 Case Study Reflection

In Sect. 5 we observed a SPO during the design of a MDEE. We have shown how
design decisions from the architecture determine the priorities of the quality
characteristics. The existing architecture of the MDEE and the design decisions
that are present together form the context of the model execution approach. It
shows that, just as with any component in a larger system, the design of an
execution approach does not stand on its own, but needs to be embedded in the
overall architecture. Some design decisions might constrain the execution app-
roach, other design decisions might even mitigate the problems that an execution
approach give. As an example we look at build-time time behavior, a require-
ment that was described in the previous Section. From Table 3 we learn that the
interpretive approach is preferred when a specific build-time time behavior is
required. However, when the MDEE will be built using a programming language
and platform that uses interpretation, such as JavaScript, the decrease in build
times with a generative approach might be mitigated. An interpreted language
does not need a separate compile step that needs to be executed by the genera-
tor, and that reduces the build time. This shows that the design decisions that
are already present influence the execution approach.



240 M. Overeem et al.

We have distilled three areas from the decisions described in Sect.5 that
steered the design of the model execution approach. The decisions described in
Sect. 5, and summarized in Table4 are used to illustrate the areas.

6.1 The Metamodel

The metamodel and its features and requirements have an influence on the most
fitting model execution approach. This is illustrated by decision D1: OEM and
requirement R6: Customize the model.

A model with a high-level of abstraction (such as D1: OEM) will require
a more complex model execution, because the distance in terms of abstraction
between a programming language and the model is larger. With an interpretive
approach, the application will require more resources to perform this model exe-
cution. This influences the run-time behavior of the model execution approach,
and thus the application itself.

On the other hand, requirement R6: Customize the model increases the
priority of the build-time time behavior characteristic. This leads to a preference
for run-time interpretation, because that approach is preferred if build-time time
behavior is important.

6.2 The Architecture

The chosen architecture for the application forms a second area of influence on
the most fitting model execution approach. A multi-tenant, distributed applica-
tion (as defined by D3: Multi-tenancy and D5: Distributed application)
can result in conflicting requirements for the most fitting model execution app-
roach.

On the one hand, multi-tenancy prefers interpretation, because it allows the
sharing of a single application instance for multiple tenants (see characteristic
co-existence in Sect.4). This maximizes the resource sharing, and enables fast
unloading and loading of changes, which decreases the build times. On the other
hand, a distributed application might not benefit from interpretation, because
every process has to do the interpretation. Figure 2 shows that the interpretation
process is part of the application, and is thus duplicated when the application
is separated in multiple components and processes. This adds of course resource
utilization to the platform.

The decision for a distributed application (D5: Distributed application),
makes it possible to design a hybrid model execution approach. A distributed
application consists of different (distributed) components that can use their own
execution approach, shown in Sect.5 where only the messages were re-designed.

6.3 The Platform

Although Kelly and Tolvanen [5] make no distinction between the architecture,
framework, the operating system, or the runtime environment, we see a dif-
ferent influence from the operating system or runtime environment. As deci-
sion D4: .NET platform illustrates, the lack of support for dynamic software



Generative versus Interpretive Model-Driven Development 241

updating requires a different model execution approach to satisfy the requested
build-time time behavior. This matches the approaches of Meijler et al. [6] with
their customized Java class loader and Czarnecki and Eisenecker [4] using the
extension object pattern.

The SaaS delivery model (D2: SaaS delivery model) removes most of the
problems around installability and co-ezistence: the platform is controlled by the
SPO.

6.4 The Decision Support Framework

From the observations we see three distinct areas that influence the model exe-
cution approach. The metamodel and its features and requirements lead to deci-
sions that influence the execution approach. The architecture and the platform
can both constrain the execution approach as well as mitigate challenges. Deter-
mining the priorities for the quality characteristics can be a difficult task.

The design of the best fitting model execution approach for a MDEE is not
different from other parts of the MDEE; it is not possible without knowledge
of the context. The description of the design process that we gave in Sect.b
is generic for the software development life cycle. We propose, based on the
observations made during the case study, a tailored version of the process for
the design of a model execution approach (shown in Fig.3). It shows that the
current architecture is input for the prioritization of the quality characteristics.
The priorities can then be used to asses the possible execution approaches. How
the priorities are determined is not prescribed by the framework, however, we
have shown two possible methods to determine them: an informal method and
the AHP method.

Design possible Legend
model exe;]utlon Model execution
approaches approach
Process
Determine the R Priorities Asses the Artefact
priorities approaches
—’
) Preferred model Connect artefacts
Current architecture execution to processes as
(all design decisions) approach input/ output

Fig. 3. The process of selecting a best fitting model execution approach. The process
starts with the design of possible execution approaches. The current architecture is
the input for the prioritization of quality characteristics. The priorities can be used in
assessing possible execution approaches.



242 M. Overeem et al.

The framework offers guidance for SPOs in the design of their model execu-
tion approach. By formalizing their architecture in a set of design decisions, and
by prioritizing the quality characteristics, SPOs can calculate the preference for
either the generative or the interpretive approach. This can then in turn be used
to design a fitting hybrid model execution approach.

7 Discussion

The validity of our research is threatened by several factors. The internal validity
of our study is threatened because the correlation between quality characteris-
tics on te one hand and the execution approach on the other hand are not
straightforward. The claims in the reviewed literature, however, do show a con-
vergence towards each other. Some characteristics lack a significant number of
references, making them volatile. However, we regard the claims that are made
not as controversial, but in line with existing research. The data that we found
in literature consists of anecdotal argumentation, based on the experience of
the authors. The claims that were made, were not validated and not supported
with empirical evidence. To create a more trustworthy decision support frame-
work, the data presented in Table 3 should be validated by empirical research.
Experiments or large case studies should provide more quantitative data on the
fulfillment of the different quality characteristics.

The construct validity of our case study is threatened by the fact that one
of the authors is involved in the object of the study, resulting in a possible bias
in our observations. However, the observations were made during a period of
several months in which the model execution was actively designed. Our obser-
vations were reviewed and commented on by other team members involved. The
descriptions of the observations, and the described requirements and decisions
were correctly described according to these comments.

The external validity of our research is threatened because our case study is
done at a single company. The observations, however, were done over an extensive
period of time, and the results were discussed with the team. We argue that the
conclusions and observations are in line with existing literature. The decision
support framework, however, should be further strengthened by additional case
studies.

8 Conclusion

We present two contributions to the research on MDD, and in particular the
development of MDEEs. The survey in Sect. 3 illustrates that there is a lack of
guidance and knowledge for SPOs. Although the SPOs show that indeed many
forms of model execution approaches are used, they do not have an explicit
rationale for their design.

In Sect.4 we studied and summarized existing literature to correlate qual-
ity characteristics with model execution approach. Although this knowledge was



Generative versus Interpretive Model-Driven Development 243

already available, it was scattered over many papers. Our study makes the expe-
rience and knowledge of many authors available to MDD researchers and practi-
tioners. We summarized the results in Table 3, which can be used as a reference
in the design of a fitting model execution approach. In Sect.5 we demonstrate
how these results can be used as input for the decision making in selecting alter-
natives.

The second contribution that we present is the decision support framework
as presented in Sect. 6. With this framework, SPOs have a structured process for
the design of the model execution approach By making these design decisions
explicit, and by adding the results from Table 3 as input to the decision making
process, SPOs can design the best fitting execution approach. The influence of
the context of the MDEE as shown in Sect. 6, and the interplay between existing
design decisions and the model execution approaches is made explicit and can
lead to better designs.

Although we are not able to relieve SPOs from the hard work of designing a
model-driven engineering environment, we argue that our research brings them
closer to the best fitting design. By making existing knowledge and experience
accessible, the solutions in the decision making process can be assessed with
more confidence. In Sect. 3 we show that many SPOs already use a hybrid form
of model execution, but do not have a strong rationale. However, our research also
uncovers the need for more empirical research to support SPOs in the design and
development of MDEEs. Table 3 is primarily based on anecdotes, and often not
backed by real evidence. Experiments and case studies should be conducted to
strengthen the evidence used in our decision support framework. The framework
itself is created by observing a single SPO designing a model execution approach,
and it should be evaluated by applying it at other SPOs.

Many questions in the design of software can be answered with “it depends”,
leaving the questioner puzzled as to what he should do. We present how the
context of the MDEE influences the design of a model execution approach for
MDEEs. Existing design decisions determine the priorities of quality character-
istics, which in term steer the design of the model execution approach. We also
show how SPOs can utilize the knowledge presented in this paper to allow them
to steer their design process towards the most fitting model execution approach.

Acknowledgements. This research was supported by the NWO AMUSE project
(628.006.001): a collaboration between Vrije Universiteit Amsterdam, Utrecht Univer-
sity, and AFAS Software in the Netherlands. The NEXT Platform is developed and
maintained by AFAS Software. Further more, the authors like to thank Jurgen Vinju,
Tijs van der Storm, and their colleagues for their feedback and knowledge early on in
the writing process. Finally we thank the team at AFAS Software for their opinions,
feedback, and reviews.

References

1. Overeem, M., Jansen, S.: An exploration of the ‘It’ in ‘It Depends’: generative
versus interpretive model-driven development. In: 5th International Conference on
Model-Driven Engineering and Software Development, MODELSWARD (2017)



244

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Overeem et al.

Diaz, V.G., Valdez, E.R.N., Espada, J.P., Bustelo, B.C.P.G., Lovelle, J.M.C.,
Marin, C.E.M.: A brief introduction to model-driven engineering. Tecnura 18, 127—
142 (2014)

Brown, A.W.: An Introduction to Model Driven Architecture. The Rational Edge,
pp. 1-16 (2004)

Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional, Boston (2000)

Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley, Hoboken (2008)

Meijler, T.D., Nytun, J.P., Prinz, A., Wortmann, H.: Supporting fine-grained gen-
erative model-driven evolution. Softw. Syst. Model. 9(3), 403—424 (2010)
Batouta, Z.I., Dehbi, R., Talea, M., Hajoui, O.: Multi-criteria analysis and
advanced comparative study between automatic generation approaches in software
engineering. J. Theor. Appl. Inf. Technol. 81, 609-620 (2015)

Fabry, J., Dinkelaker, T., Noye, J., Tanter, E.: A taxonomy of domain-specific
aspect languages. ACM Comput. Surv. 47, 1-44 (2015)

Zhu, L., Aurum, A., Gorton, I., Jeffery, R.: Tradeoff and sensitivity analysis in
software architecture evaluation using analytic hierarchy process. Softw. Qual. J.
13(4), 357-375 (2005)

Guana, V., Stroulia, E.: How do developers solve software-engineering tasks on
model-based code generators? An empirical study design. In: First International
Workshop on Human Factors in Modeling (2015)

Capilla, R., Rey, U., Carlos, J., Duenas, J.C., Madrid, U.P.D.: The decision view’s
role in software architecture practice. IEEE Softw. 26(2), 36-43 (2009)

Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA
2005), pp. 109-120 (2005)

van der Ven, J.S., Jansen, A.G.J., Nijhuis, J.A.G., Bosch, J.: Design decisions: the
bridge between rationale and architecture. In: Dutoit, A.H., McCall, R., Mistrik,
1., Paech, B. (eds.) Rationale Management in Software Engineering, pp. 329-348.
Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-30998-7_16
Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A quality-driven decision-
support method for identifying software architecture candidates. Int. J. Softw. Eng.
Knowl. Eng. 13, 547-573 (2003)

Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: 18th International Conference on Evaluation
and Assessment in Software Engineering (EASE 2014), pp. 1-10 (2014)

van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Not. 35, 26-36 (2000)

Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37, 316-344 (2005)

Tankovié, N.: Model driven development approaches: comparison and opportuni-
ties. Technical report (2011)

Voelter, M.: Best practices for DSLs and model-driven software development. J.
Object Technol. 8, 79-102 (2009)

ISO: ISO/IEC 25010:2011 Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality
models. Standard, International Organization for Standardization, Geneva, CH
(2011)

Stahl, T., Volter, M., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management (2006)



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Generative versus Interpretive Model-Driven Development 245

Brady, E.C., Hammond, K.: Scrapping your inefficient engine. ACM SIGPLAN
Not. 45, 297 (2010)

Cleenewerck, T.: Modularizing language constructs: a reflective approach. Ph.D.
thesis (2007)

Consel, C., Marlet, R.: Architecturing software using a methodology for language
development. Princ. Declar. Program. 1490, 170-194 (1998)

Cook, W.R., Delaware, B., Finsterbusch, T., Ibrahim, A., Wiedermann, B.: Model
transformation by partial evaluation of model interpreters. Technical report (2008)
Cordy, J.R.: TXL - a language for programming language tools and applications.
In: Proceedings of the ACM 4th International Workshop on Language Descriptions,
Tools and Applications, pp. 1-27 (2004)

Ertl, M.A., Gregg, D.: The structure and performance of efficient interpreters. J.
Instr.-Level Parallelism 5, 1-25 (2003)

Gaouar, L., Benamar, A., Bendimerad, F.T.: Model driven approaches to cross
platform mobile development. In: Proceedings of the International Conference on
Intelligent Information Processing, Security and Advanced Communication, pp.
19:1-19:15 (2015)

Gregg, D., Ertl, M.A.: A language and tool for generating efficient virtual machine
interpreters. In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-
Specific Program Generation. LNCS, vol. 3016, pp. 196-215. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-25935-0-12

Hinkel, G., Denninger, O., Krach, S., Groenda, H.: Experiences with model-driven
engineering in neurorobotics. In: Wasowski, A., Lonn, H. (eds.) ECMFA 2016.
LNCS, vol. 9764, pp. 217-228. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-42061-5_14

Inostroza, P., Van Der Storm, T.: Modular interpreters for the masses implicit
context propagation using object algebras. ACM SIGPLAN Not. 51(3), 171-180
(2015)

Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall International (1993)

Jorges, S.: Construction and Evolution of Code Generators: A Model-Driven and
Service-Oriented Approach, vol. 7747. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36127-2

Klint, P.: Interpretation techniques. Softw.: Pract. Exp. 11, 963-973 (1981)
Ousterhout, J.K.: Scripting: higher-level programming for the 21st century. Com-
puter 31, 23-30 (1998)

Pessoa, L., Fernandes, P., Castro, T., Alves, V., Rodrigues, G.N., Carvalho, H.:
Building reliable and maintainable dynamic software product lines: an investigation
in the body sensor network domain. Inf. Softw. Technol. 86, 54-70 (2017)

Riehle, D.; Fraleigh, S., Bucka-Lassen, D., Omorogbe, N.: The architecture of a
UML virtual machine. In: International Conference on Object Oriented Program-
ming Systems Languages and Applications (OOSPLA), pp. 327-341 (2001)
Romer, T.H., Lee, D., Voelker, G.M., Wolman, A., Wong, W.A., Baer, J.L., Ber-
shad, B.N., Levy, H.M.: The structure and performance of interpreters. ACM SIG-
PLAN Not. 31, 150-159 (1996)

Schramm, A., Preuiner, A., Heinrich, M., Vogel, L.: Rapid Ul development for
enterprise applications: combining manual and model-driven techniques. In: Petriu,
D.C., Rouquette, N., Haugen, @. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 271—
285. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2_19



246

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

M. Overeem et al.

Sundharam, S.M., Altmeyer, S., Navet, N.: Model interpretation for an AUTOSAR
compliant engine control function. In: 7th International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS) (2016)
Tankovié¢, N., Vukotié, D., Zagar, M.: Rethinking model driven development: analy-
sis and opportunities. In: Proceedings of the ITI 2012 34th International Conference
on Information Technology Interfaces (ITI), pp. 505-510 (2012)

Thibault, S.A., Marlet, R., Consel, C.: Domain-specific languages: from design to
implementation application to video device drivers generation. IEEE Trans. Softw.
Eng. 25, 363-377 (1999)

Thibault, S., Consel, C.: A framework for application generator design. ACM SIG-
SOFT Softw. Eng. Notes 22, 131-135 (1997)

Varré, G., Anjorin, A., Schiirr, A.: Unification of compiled and interpreter-based
pattern matching techniques. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Storrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 368-383. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31491-9_28

Voelter, M., Visser, E.: Product line engineering using domain-specific languages.
In: 15th International Software Product Line Conference, pp. 70-79 (2011)

Zhu, M.: Model-driven game development addressing architectural diversity and
game engine-integration. Ph.D. thesis (2014)

Saaty, T.: How to make a decision: the analytic hierarchy process. Eur. J. Oper.
Res. 48, 9-26 (1990)

Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques
for software architecture design. ACM Comput. Surv. 43, 1-28 (2011)
Schunselaar, D.M.M., Gulden, J., Schuur, H.V.D., Reijers, H.A.: A systematic eval-
uation of enterprise modelling approaches on their applicability to automatically
generate software. In: 18th IEEE Conference on Business Informatics, pp. 290-299
(2016)

Kabbedijk, J., Bezemer, C.P., Jansen, S., Zaidman, A.: Defining multi-tenancy: a
systematic mapping study on the academic and the industrial perspective. J. Syst.
Softw. 100, 139-148 (2015)



