
API Management Maturity of
Low-Code Development Platforms?

Michiel Overeem �1[0000−0003−4807−4124], Slinger
Jansen2,3[0000−0003−3752−2868], and Max Mathijssen2

1 AFAS Software, Inspiratielaan 1, Leusden, The Netherlands
michiel.overeem@afas.nl

2 Utrecht University, Princetonplein 5, Utrecht, The Netherlands
{slinger.jansen,m.mathijssen}@uu.nl

3 Visiting Scientist, School of Engineering Science, LUT University, Finland

Abstract. Low-code development platforms are environments that en-
able citizen developers without software engineering knowledge to create
software products. These software products range from small business ap-
plications to large business platforms, around which software ecosystems
increasingly form. In these software ecosystems, different organizations
want to extend the created software products with services and software,
with the goal of creating active enterprise networks that create value
collaboratively. Well designed and maintained application programming
interfaces are crucial for these organizations.
In this paper we evaluate the application programming interface man-
agement maturity of four low-code development platforms. We show that
these platform providers are not yet concerned with helping their cus-
tomers build software ecosystems around the software platforms that
citizen developers create. Furthermore, we identify the software engineer-
ing research challenges that these platform providers face. For instance,
low-code development platforms should create abstractions that let cit-
izen developers design, develop, and manage application programming
interfaces. If low-code development platform providers follow our advice
and act on it, they will become able to provide customers with complete
ecosystem-enabled platforms instead of providing only simple throwaway
business applications.

Keywords: Low-Code · Model-Driven Development · API Management
· Citizen Software Development

1 Introduction

Increasingly, traditional Software Producing Organizations, i.e., organizations
whose main activities include the production of software such as software ven-
dors and open source organizations, are discovering platforms as a vehicle to in-
crease the value of their software for their customers through collaboration with

?
This research was supported by the NWO AMUSE project (628.006.001): a collaboration between
Vrije Universiteit Amsterdam, Utrecht University, and AFAS Software in the Netherlands. See
amuse-project.org for more information . The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-79186-5_25.



2 Overeem, Jansen, and Mathijssen

third parties. This transformation from product towards a platform is called
‘platformisation’ [14]. Platforms are a vehicle for software ecosystems and are
defined as a set of organizations collaboratively serving a market for software
and services [9]. These ecosystems form around software platforms, which in turn
are managed by software platform orchestrators.

We find that not all software products can easily transform into software
platforms. One particular category of software products are products that are
created using no-code/low-code development platforms (LCDPs). LCDPs apply
model-driven development to raise the abstraction level of software development,
increasing productivity and decreasing complexity as a result [3]. They target
a wide variety of users, from professional software developers to non-technical
business experts [13]. The latter category is commonly referred to as the ‘citi-
zen developer’: people without software development education who nonetheless
build software applications. Customers of these LCDPs utilize these platforms
to increase their agility, it enables them to develop business applications more
efficiently without suffering from the lack of professionally trained software de-
velopers. While LCDPs are traditionally used to create agile business software
applications, they are increasingly becoming part of the core IT landscape [17].
As long as the LCDPs prove their value, customer companies will utilize them
in more and more diverse projects. The customer companies will be interested
in evolving their application into a platform to enable complementors, which are
organizations that build application that extend the core system, to create more
value [9].

Evolving into an ecosystem is done by offering parts of the developed ap-
plication through Application Programming Interfaces (APIs). Research shows
that concerns such as stability, security, and scalability in ecosystems are re-
lated to API management capabilities [1]. API management is the activity that
enables organizations to design, publish, and deploy their APIs for (external)
developers to consume. This is one of the enabling practices for the creation of
an ecosystem. Traditionally the activities within API management are executed
by technical staff members. The strength of LCDPs, however, is that activities
that used to be executed by highly technical staff, such as software engineers,
are now executed by citizen developers. To support these API management ac-
tivities LCDPs have to provide the means to the citizen developers to integrate
applications developed on the LCDP with other applications.

We believe that LCDP providers must mature their API management capa-
bilities to remain relevant for citizen developers. After all, software ecosystems
are increasingly seen as the way to remain strategically relevant in the software
industry [8]. In this paper, we distinguish between two software ecosystems that
form around LCDPs. First, the LCDP ecosystem is the ecosystem that forms
around the LCDP and the provider of the platform. The second is the LCDP
Application Ecosystem, which forms around the application that is created by
one of the customers of the LCDP. Our contribution is an evaluation of the matu-
rity of API management capabilities support among LCDPs, along with a set of
challenges that we identify. We evaluate the capabilities of four LCDPs through



API Management Maturity of Low-Code Development Platforms 3

descriptive case studies. In these case studies we measure the maturity of their
API management capabilities through a Focus Area Maturity Model (FAMM).
A FAMM is a model that groups capabilities and practices in focus areas and
aligns them along maturity levels, which can be used to evaluate organizational
practices around particular focus areas [2, 8].

Section 2 describes our research method and gives a short description of
the four LCDP providers investigated in our evaluating case studies. The API
management FAMM (API-m-FAMM) is described in Section 3. In Section 4 we
evaluate the LCDPs to uncover their level of support for a citizen developer
in API management activities. The results of the case studies are analyzed in
Section 5. We contribute a set of engineering research challenges for software
engineering researchers in Section 6. Threats to validity are discussed in Sec-
tion 7. In Section 8 we observe, through the four case studies, that some LCDPs
are slowly maturing their API management capabilities while others do not act
on these opportunities. Furthermore, we observe that the API-m-FAMM, while
mostly aimed at organizations with a proprietary API infrastructure, is also ap-
plicable to LCDPs. Finally, we conclude that these platform providers need to
increase the level of abstraction of the technical complexity of managing APIs,
without losing the strategic strengths of it.

2 Research Method

Our research focuses on the question: How mature are the API management
capabilities that LCDPs offer? We use an established framework for evaluation
of API management maturity, to evaluate how well applications, created with
four LCDPs, enable API capabilities for the LCDP customer.

In our research we apply a FAMM to measure the maturity of API man-
agement in LCDPs. The API-m-FAMM [11] captures API management in 81
practices, grouped in 20 capabilities, which are in turn assigned to six focus ar-
eas. The model is intended for organizations that develop their own proprietary
API infrastructure. However, in our case studies we evaluate the LCDPs, to un-
cover how they support the API management activities of their customers. We
apply a maturity model to measure the current state and provide a roadmap to
advance this state, similar to [5]. Please note that more details are provided on
the API-m-FAMM in the next Section.

The evaluations are performed in four descriptive case studies, which were
conducted with the ACM SIG Empirical Research standard in mind [16]. To be
able to extrapolate our findings we selected platforms that represent the current
state of LCDPs. Our selection was made based on the Quadrant for Enterprise
LCDPs of the advisory company Gartner [19]. This report surveys 18 platforms
and categorizes them into leaders, visionaries, challengers, and niche players. We
selected two leaders and two visionaries that were willing to cooperate in our
evaluation. From Gartner’s report we can conclude that leaders and visionaries
will show the state of the art in Enterprise LCDPs and represent the most
advanced platforms.



4 Overeem, Jansen, and Mathijssen

The case studies were conducted with the following steps. First, public sources
such as product documentation and company blogs were studied to create a
first impression of the API management capabilities of the LCDP. Next, an in-
terview with a company expert (either a product manager, architect, or chief
technology officer) was conducted. During the interview the API-m-FAMM [11]
was described to the interviewee, including all of the practices and their ter-
minology. Together with the interviewee the API-m-FAMM was used to asses
the LCDP. Finally, the interviewees discussed their LCDP with respect to API
management, and their opinion on creating platforms on top of the LCDP. Sub-
sequently the interviews were processed and analyzed. Based on this analysis and
together with the company documentation the evaluation of the LCDP using the
API-m-FAMM was completed. Afterwards the evaluation was shared with the
interviewee to correct mistakes and oversights. Finally, our general findings were
discussed with the interviewees, to establish how they perceive the role of APIs
in their generated applications and whether they equally acknowledge the trend
of ‘ecosystemification’.

We shortly describe the case study organizations here. Mendix is a world-
wide operating low-code platform provider, founded in the early 2000s. The com-
pany employs 1,000 employees, serving thousands of customer companies and an
ecosystem of almost 150,000 developers. OutSystems, as the second biggest and
oldest provider, has been active for almost 20 years. With well over 1,000 employ-
ees worldwide, they serve a large range of companies. The LCDP originated as a
rapid application development platform. Betty Blocks, founded almost 10 years
ago, employs around 200 people. Operating worldwide, they serve customers in
all business domains. This LCDP has a strong focus on the citizen developer in
enterprises, as reflected in their vision: ‘anyone should be able to build an appli-
cation.’ Pega is the oldest (40 years) and biggest (6,000 employees) company of
the four. Its LCDP evolved from a business process modelling suite.

3 Introduction of the API-m-FAMM

The goal of the API-m-FAMM4 is to support organizations that expose their
APIs to third-party developers in their API management activities. Using the
API-m-FAMM, organizations may evaluate, improve upon and assess the degree
of maturity their API management processes have.

A focus area maturity model [18] consists of focus areas, and an area consists
of capabilities, which are defined as the ability to achieve a certain goal related to
API management, through the execution of two or more interrelated practices.
A practice in turn is defined as an activity that has the express goal to improve,
encourage and manage the usage of APIs. The API management maturity model
is created following the steps described by [18] and [2]. The scope, design, and
populate phase are based on a systematic literature review [10]. The model was
further refined through two rounds of interviews with experts: eleven interviews

4 A detailed description and the source data are published [11]. The model is also
available on the https://MaturityModels.org web site.



API Management Maturity of Low-Code Development Platforms 5

in the first round and three interviews in the second round. Finally the model
was used to asses five different software products.

The API-m-FAMM consists of six focus areas that we briefly summarize here:

– Lifecycle Management: An API undergoes several stages over the course
of its lifetime [12]. Version management is particularly challenging: comple-
mentors in the ecosystem benefit from stable APIs, but at the same time
demand new functionality to further their own product.

– Security: APIs provide access to valuable and protected data and assets.
Therefore, mature APIs implement the latest security standards, such as
the OAuth 2.0 authorization protocol, and protection against threats such
as Denial of Service attacks.

– Performance: APIs deliver data and services to complementors in the
ecosystem. This increases the demand on APIs to perform well under load:
the application itself as well as the complementors are negatively effected by
a decrease in performance.

– Observability: An organization benefits from insight into the API’s usage.
Through various monitoring techniques, the organization is able to collect
metrics which can shed light on the API’s health and performance, as well
as its usage by complementors. A performant and healthy API is crucial,
because an interrupted service of the APIs will also most likely interrupt the
complementors application.

– Community: It is desirable for organizations to foster, engage, and support
the community that exists around the API. This entails offering developers
the ability to register for API access and offering them access to test envi-
ronments, code samples, and documentation.

– Commercial: Exposing and consuming APIs can have a commercial aspect
tied to it [4]. On one hand, APIs can require a subscription fee from the
complementors, on the other hand complementors might demand Service
Level Agreements from the provider.

These focus areas are composed of 20 capabilities, which in turn comprise
81 practices. Within their corresponding capabilities, which may be regarded
as sub-topics, practices are ranked based on the perceived complexity of their
implementation. In order to verify whether an organization has implemented a
practice, a set of conditions for implementation has been defined for each prac-
tice. By examining the fulfillment of the aforementioned implementation condi-
tions, it may be determined whether an organization has implemented a practice.
When this is done for each practice a capability consists of, an organization’s
maturity level for that capability may be determined.

We provide a description of the practice Implement Multiple API Versioning
Strategy here, to clarify how the practices are evaluated. The description of this
practice is “The organization has a versioning strategy in place which entails the
process of versioning from one API to a newer version. In order to do so, the
organization must be able to maintain multiple versions of (one of) their API(s)
for a period of time. Possible strategies include URI/URL Versioning (possibly



6 Overeem, Jansen, and Mathijssen

in combination with adherence to the Semantic Versioning specification), Query
Parameter versioning, (Custom) Header versioning, Accept Header versioning
or Content Negotiation.” Each practice has an Implemented when text, that
describes one or more conditions to evaluate whether a practice has been imple-
mented or not. In this case the condition is self-explanatory: “The organization
utilizes one of the following versioning strategies: URI/URL Versioning, Query
Parameter versioning, (Custom) Header versioning, Accept Header versioning or
Content Negotiation.”. For the LCDPs, we discussed whether it is possible to
maintain different versions of the API, or whether an API always co-evolves with
the model and does not have any kind of evolution mechanisms implemented to
enable different API versions.

4 Case Studies

This Section describes the four evaluations of the LCDPs that were done with the
API-m-FAMM. This assessment was done based on the available platform doc-
umentation and the interview. The interviewees were able to point out mistakes
in the evaluation, comments were incorporated accordingly. First we describe
the LCDPs in general, then we discuss the six focus areas and how the LCDPs
support these.

Mendix - The road map of Mendix shows a focus towards enabling citizen
developers to create increasingly complex applications, which is motivated by
two developments. First of all, applications developed on the LCDP are growing
and becoming increasingly complex. Second, an increase in demand from citizen
developers to build integrated applications independent from professional devel-
opers is observed. Strong API management capabilities enable customers to split
their large applications into smaller integrated applications. The envisioned cen-
tral API catalog will bring together applications within an enterprise, enabling
citizen developers to develop integrated solutions.

OutSystems - The focus of OutSystems is ensuring that the co-development
between the citizen developer and the professional developer is made as efficient
as possible. Their vision is ‘fast and agile development of enterprise applications’.
API management is not hidden behind abstractions, but rather placed in the
hands of professional developers. The gap between technical API management
and the citizen developers is not actively bridged, instead the co-development
between citizen developers and professional developers is promoted.

Betty Blocks - This LCDP is focused on consuming APIs, instead of pub-
lishing them. Betty Blocks states that their LCDP is not used to develop core
systems, but to develop supporting applications. Applications mostly comple-
ment existing systems. The runtime of the LCDP consists of a web-based server
and browser-based client application. Developers do not have to explicitly design
APIs, as every application feature is an API by default through this architecture.

Pega - Ease of change and rapid application development by collaborat-
ing departments in enterprises are the focus of Pega. The developer tool of the
LCDP supports multiple personas, both the citizen developer as well as the



API Management Maturity of Low-Code Development Platforms 7

professional developer. Pega supports a myriad of integration options, among
REST or SOAP APIs it also supports integration through database connection
or e-mail. Despite plentiful of options to integrate with other applications, Pega
does not observe a large portion of their customers using these capabilities to
integrate with complementors outside of the organization.

Through the API-m-FAMM evaluation we measure the state of API man-
agement support that the LCDPs offer. Considering that the API-m-FAMM is
targeted towards organizations that expose their APIs to third-party developers,
the evaluation of LCDPs differs from this original intention. A LCDP is both an
application (run-time) platform and a development platform. API management
practices can be implemented in different ways in a LCDP:

– A practice can be statically implemented by the LCDP, meaning that
the customer cannot influence it (an example is Load balancing).

– Variable implemented practices are those practices that can be influenced
by citizen developers or professional developers, such as Multiple API Ver-
sions Strategy.

– Some practices can only be implemented by using products from third-
party vendors. Example is the Adopt Subscription-Based Monetization Model
practice.

– The LCDP is a development environment and in that capacity the LCDP
can be used to implement a number of API management practices. Examples
of these build-your-own practices are Community Forum and Broadcast
API Status.

The last two categories, third-party and build-your-own, result in more work
for the customers of the LCDP. They become responsible for developing and
maintaining these specific practices, while statically and variable implemented
practices do not have these liabilities. Therefore, we evaluate the four LCDPs
by scoring the practices in two categories: supported (by the LCDP) and custom
(developed) practices. The first category consists of all statically and variable
implemented practices, third-party and build-your-own practices are grouped
in the second category. Table 1 shows the results per API-m-FAMM capabil-
ity5. Every score consists of two numbers: first the number of practices that are
supported by the LCDP, then the number of practices that need to be custom
implemented.

Focus Area: Lifecycle Management - Generally speaking, the LCDPs
support both the consumption and publication of modern APIs. Standard proto-
cols such as SOAP and REST are supported by all LCDPs. Mendix, OutSystems,
and Pega also support the API protocol OData. The decision of Betty Blocks to
create APIs automatically shows a strong opinion on APIs. Some practices are
not implemented, because their choice for GraphQL based APIs enforces APIs

5 The detailed evaluations are available through http://dx.doi.org/10.17632/

wdtg5ytdpf.1



8 Overeem, Jansen, and Mathijssen

Table 1. Evaluation of the API management maturity of the four LCDPs according to
the API-m-FAMM: Mendix (M), OutSystems (O), Betty Blocks (B) and Pega (P). For
every API-m-FAMM capability we show the total number of practices, and the LCDP
evaluation. The two numbers per LCDP stand for practices supported by the LCDP
and practices that need to be custom developed respectively.

Focus Area M O B P

1 Lifecycle Management 7/5 8/4 6/4 8/4

1.1 Version Management (4 practices) 2/2 3/1 2/1 3/1
1.2 Decoupling API & Application (4 practices) 4/0 4/0 3/0 4/0
1.3 Update Notification (4 practices) 1/3 1/3 1/3 1/3

2 Security 12/4 12/4 10/4 12/4

2.1 Authentication (3 practices) 3/0 3/0 2/0 3/0
2.2 Authorization (4 practices) 4/0 4/0 4/0 4/0
2.3 Threat Detection & Protection (6 practices) 3/3 3/3 2/3 3/3
2.4 Encryption (3 practices) 2/1 2/1 2/1 2/1

3 Performance 6/5 6/5 8/2 7/4

3.1 Resource Management (4 practices) 3/1 3/1 3/1 3/1
3.2 Traffic Management (7 practices) 3/4 3/4 5/1 4/3

4 Observability 5/7 5/7 5/7 5/7

4.1 Monitoring (3 practices) 0/3 0/3 0/3 0/3
4.2 Logging (4 practices) 4/0 4/0 4/0 4/0
4.3 Analytics (5 practices) 1/4 1/4 1/4 1/4

5 Community 10/8 9/9 10/8 8/10

5.1 Developer Onboarding (4 practices) 4/0 4/0 4/0 4/0
5.2 Support (3 practices) 1/2 1/2 1/2 0/3
5.3 Documentation (3 practices) 2/1 2/1 2/1 2/1
5.4 Community Engagement (5 practices) 0/5 0/5 0/5 0/5
5.5 Portfolio Management (3 practices) 3/0 2/1 3/0 2/1

6 Commercial 2/10 2/10 2/10 2/10

6.1 Service-Level Agreements (4 practices) 2/2 2/2 2/2 2/2
6.2 Monetization Strategy (4 practices) 0/4 0/4 0/4 0/4
6.3 Account Management (4 practices) 0/4 0/4 0/4 0/4

Total 42/39 42/39 41/35 42/39

without versions. Their LCDP customers cannot implement a versioning strat-
egy, considering that API consumers always use the latest version, and customers
need to take care of backwards compatibility. The other capabilities Decoupling
API & Application and Update Notification show great resemblance between the
four LCDPs. In the first capability all practices are supported by the LCDPs,
while customers are expected to custom implement most practices in the second
capability.

Focus Area: Security - In the area Security there is almost no differenti-
ation between the LCDPs. All of the LCDPs follow modern security standards
such as Implement Transport Layer Encryption, Implement Authentication Pro-
tocol, and Implement Access Protocol. The platforms support their customers in
most practices.



API Management Maturity of Low-Code Development Platforms 9

Only the capability Threat Detection & Protection has a number of advanced
practices that need to be implemented by the LCDP customers: Security Breach
Protocol, Conduct Security Review, and Implement Zero Trust Network Access.
While the providers have implemented these practices for their own hosted ser-
vices, customers are responsible for their own protocols and are thus required to
implement these practices as well.

Focus Area: Performance - Again the LCDPs are similar in their support
of the practices in this area. In the Resource Management capability we observe
that the LCDPs implement most of the practices. Load Balancing, Scaling, and
Failover are all supported by the providers. Advanced practices in Traffic Man-
agement are mostly left to be custom implemented by the LCDP customers. The
LCDP customers are required to configure third-party applications that imple-
ment practices such as Manage Quota and Prioritize Traffic. Implementing these
practices requires expertise of professional developers and thus extra investment
from the customers.

Focus Area: Observability - In this area there is no difference between the
LCDPs. The practices in the capability Logging are supported by all four plat-
forms. Monitoring the health, performance and resource consumption of APIs is
left to the customers. Custom Analysis Reports, Status Broadcasting, and Alerts
are also left to be custom implemented.

Focus Area: Community - Practices from the area Community that focus
on technical capabilities, such as Software Development Kit Support and API
Catalog are supported by the LCDPs. All of the LCDPs implement the API
specification language OpenAPI, which supports practices such as Use Standard
for Reference Documentation and Provide SDK Support. Less technical prac-
tices, such as Social Media Presence and Communication Channel are left to
the customers to implement. Some of these practices, such as Community Form,
can be built on top of the LCDP.

Focus Area: Commercial - The area Commercial is underdeveloped in all
four LCDPs. Developers are not able to monetize the APIs developed on top of
the LCDP, neither are they able to construct custom Service Level Agreements
towards their API consumers. In order for customers to implement these prac-
tices they are required to integrate with third-party API management solutions.

5 Analysis of the Results

The four LCDPs under study show a great resemblance when evaluating their
API management maturity. The fact that they are all either leaders or visionaries
in the Quadrant for Enterprise LCDPs makes this no surprise, considering that
they are ranked similarly. However, what is surprising is the general lack of
support for advanced API management practices.

Mendix supports 42 practices, leaving 39 practices to be implemented by
their consumers, making it an almost 50-50 split. The roadmap, as discussed
during the interview, shows a focus on supporting their customers in the API
management activities. This support is aimed at making it easier for citizen



10 Overeem, Jansen, and Mathijssen

developers to build and publish APIs of higher quality. This roadmap has a
focus on the practices in the Community practice. The area Commercial is not
on the roadmap, making it harder for customers to monetize their APIs.

OutSystems supports mostly the same practices as Mendix, but made it clear
during the interview that their ambitions differ. They have a strong focus on
creating a platform that can enable the development of core enterprise systems
by teams consisting of both citizen and professional developers. In this vision,
there is no need to support all practices, because the provider recognizes that
their customers already have several enterprise API platform solutions in place.
Therefore, although there is a mature platform, many of the API management
practices are left to their customer to implement themselves.

Within Betty Blocks (supporting 41 practices), publishing APIs is possible,
but the capabilities are not mature enough to build a platform. In agreement
with their vision, the LCDP can be used to complement other applications, but
is less usable to create core systems. This is caused by two main reasons. First of
all, their opinionated implementation of API versioning through GraphQL limits
customers in how they want to expose APIs to their complementors. Second,
Betty Blocks focuses less on the implementation of practices with third-party
vendors. This makes it hard to implement practices such as Prioritize Traffic.

Pega (supporting 42 practices) is focused on letting their consumers build
richer applications with their platform. These richer applications require integra-
tion with other applications. However, the focus of Pega is on in-house company
projects that integrate within the company, or are complemented by selected
organizations and partners. Companies are not supported in building an open
platform that attracts complementors: capabilities for advanced community en-
gagement or monetization strategies are not supported.

Overall the focus of the LCDPs appears to be on building enterprise applica-
tions, and less on platforms or even ecosystems. All LCDPs show that they have
developed mature platforms, with support for modern standards in security and
resource management. Through their implemented practices they enable their
customers to develop and publish modern APIs that can be consumed by com-
plementors. However, looking at the areas Community and Commercial, which
contain less technical practices, we observe a gap. Many of the more advanced
capabilities that customers can use to build platforms and attract complemen-
tors, such as Monitoring, Analytics, Community Engagement, and Monetization
Strategy, are left to their customers to implement. The LCDPs support around
50% of the practices, leaving the other 50% to be implemented by their cus-
tomers. In the evaluation of the API-m-FAMM with non-LCDP ecosystems we
encountered five products that implemented respectively 42%, 59%, 42%, 77%,
and 79% of these practices. Three out of five of these products are more ma-
ture than support offered by the LCDPs, meaning that customers would have to
implement a number of practices themselves to built comparable products with
one of the LCDPs.

Not all providers agree with our belief that they should support API man-
agement activities to enable their customers to create platforms. By not im-



API Management Maturity of Low-Code Development Platforms 11

plementing these practices, and leaving them to be custom implemented, their
customers have to invest more effort in building a platform on top of their
LCDP. The providers miss the opportunity to support better API management
for citizen developers. Instead they obligate citizen developers to seek help from
professional developers to complete these tasks. This creates a dependency from
citizen developers on these professional developers, and misses the opportunity
to put more power in the hands of the citizen developers, democratizing software
development even further. As claimed in the Gartner report [19] LCDPs improve
the productivity and reduce the time to market, and because of the shortage of
developers, democratizing development would offer a possible solution. However,
the current state of these LCDPs does not enable citizen developers to create
platforms, without requiring the support of professional developers. Raising the
abstraction of API management practices could and should be the next step for
the LCDPs.

6 Engineering Research Challenges for LCDPs

The previous section discussed the current state of API management support
among LCDPs, measured with the API-m-FAMM. Even though we provide
LCDP providers with engineering and product planning direction through this
evaluation with the API-m-FAMM, there are still several research challenges
that hamper further progress in this domain. These challenges are based on
our observations made during the case studies and on the authors’ experience
with software ecosystems and LCDPs. They are based on the capabilities that
show the highest number of practices that require a custom implementation,
and common remarks extracted from the interviews. We outline these engineer-
ing research challenges here and provide several solution directions.

Life Cycle Management - Citizen developers will be constructing new
application extensions and releasing them to customers, probably without re-
gard for software and data complementors who use a previous version of the
application. Citizen developers need to be made more aware of the effects of
data model and interface changes for the software ecosystem surrounding the
application. While typically these problems would be solved through abstrac-
tion, it is practically impossible for citizen developers to remain ignorant of
the effects of software evolution on interfaces with third parties in the ecosys-
tem. This can be accomplished through, often complementary, practices such as
versioning policies, backwards compatibility, publishing road maps, and change
notifications [4, 6, 12].

The LCDPs support impact analysis within the platform, knowing the rela-
tions between different components. However, novel solutions to support analysis
of impact on applications outside of the LCDP are necessary to support the cit-
izen developer.

Performance - Considering that the created applications will be approached
through different channels than the traditional user interface, novel architectures
are required that can handle large volumes of traffic through other channels, such



12 Overeem, Jansen, and Mathijssen

as APIs. Architecture styles such as Microservices [7] offer a possible solution to
these scalability challenges. Of course, an important requirement is the abstrac-
tion that citizen developers should be offered.

Observability - LCDPs should be able to handle an increase in users, while
still providing the citizen developer with control over who uses the API, how
much the API is used, and how the API is used. API gateways [4] traditionally
provide these controls to professional developers and operational staff, but now
need to be supported by the LCDP itself and usable by non-technical users. The
citizen developers need to have access to API usage metrics and statistics to
ensure that they too can identify misuse and monitor traffic from the citizen
developer’s partners [20].

Community - As the community around a product starts growing, com-
plementors need to be supported as much as possible. Such capabilities are for
example enabling citizen developers to generate API access credentials for com-
plementors, infrastructures for communicating with complementors, as well as
providing application stores around a generated product. All studied LCDPs
leave the development of these community practices to the citizen developers.

The abstractions provided by LCDPs should give citizen developers enough
control over API documentation and usage, while automatically adding technical
documentation such as SDKs and source code examples. The studied LCDPs
offered this through the use of standardized specification languages, such as the
OpenAPI specification.

In the past, research has been conducted on the generation of APIs [15].
However, a number of related practices, such as Provide FAQ and Code Sam-
ples and Provide Start-up Documentation, are only offered through consumer
built solutions. These practices are challenging to support due to an ever evolv-
ing generated object model. Without support from the LCDP the developer is
responsible for evolving the manual written documentation together with the
model of the API. This will lead to mistakes that hurt the community.

While the term ‘citizen developer’ indicates that it has been the goal to open
up software engineering to people without formal software engineering educa-
tion, we can hardly claim that this has been successfully accomplished for API
management. The complexity of modern software solutions and the inherent
simplification required to create LCDPs are constantly in direct conflict with
each other. The platformisation trend lays this bare and shows that new models
and perspectives are required to truly make software engineering accessible to
any citizen developer. We see it as future work to design new abstractions that
make LCDP solutions simpler and more powerful in supporting API manage-
ment practices.

7 Threats to Validity

In this paper we present four descriptive case studies that we conducted based
on interviews and documentation. Through these case studies we evaluate the
current state of API management support offered by LCDPs.



API Management Maturity of Low-Code Development Platforms 13

Our conclusions are threatened by concerns regarding the generalizability of
these four LCPDs when compared to the LCDP industry as a whole with respect
to API management maturity. We cannot deny that there could be an LCDP that
we did not study that supports more, or even all, API management practices.
However, given that we studied four major platforms that are recognized as
such in the Quadrant for Enterprise LCDPs report [19] confirms that we have
studied a representable group. While the API maturity evaluation might not
be generalizable to other LCDPs, these four platforms are recognized as the
most innovative in the industry. Given that there might be a provider that has
a more mature support of API management practices only confirms that these
leaders and visionaries are missing out on opportunities to further support their
customers. Providers with less mature support of API management practices
make our call to action only more pressing.

Another threat to validity of this research are the evaluations of the LCDPs
based on the API-m-FAMM. Wrong or imprecise evaluations based on docu-
mentation and interpretation could distort the conclusions. The fact that the
interviewees reviewed and corrected the evaluation mitigates this risk. We be-
lieve that the general evaluation of the LCDPs with respect to API management,
combined with the vision of the LCDP provider gives a truthful representation
of the current state of API management maturity. Our findings and conclusions
are based on the global state of API management support of the LCDPs, and
do not depend on specific practice support.

In our research we focused on the LCDPs and their API management capa-
bilities. Although we discussed a number of organizations that built an internal
platform on top of the LCDP, we did not discuss specific example platforms.
We did not specifically search for an example, but rather focused on the general
state of API management maturity. Future work should study existing platforms
built on LCDPs to further understand what opportunities LCDPs have.

8 Conclusion

Our case studies, as presented in Section 4, evaluate four LCDPs using the ma-
turity model API-m-FAMM. Our research was guided by the research question:
How mature are the API management capabilities that LCDPs offer? We con-
clude that these LCDPs support around 50% of the practices described in the
API-m-FAMM. The other practices are left to be implemented by the customers
of the LCDPs. We conclude that only Mendix places API management firmly
on its road map. Both Betty Blocks and Pega do not observe a demand for API
management capabilities among their customers, and neither are they promoting
these capabilities. OutSystems recognized the demand, but has not yet focused
on providing more of these capabilities to their customers. Instead they defer
much of the work to either third-party vendors or the LCDP customers. By
not supporting these practices we believe that LCDP providers miss out on the
opportunity to further democratize software development. They instead require



14 Overeem, Jansen, and Mathijssen

citizen developers to solicitate the support of professional developers to develop
platforms that are open for other companies to extend.

We draw the following conclusions from this work. First, we suspect that
LCDP providers will soon be challenged in providing capabilities that enable
citizen developers to transform their applications into platforms. Our research
shows that LCDP providers are currently unable to support such capabilities
for citizen developers and require technical staff to implement such architectures
and mechanisms through either third-party solutions or custom solutions built
on top of the LCDP. Second, we conclude that as LCDPs are becoming more
powerful, they can use the API-m-FAMM to evaluate and update their road
maps. Finally, we identify five engineering challenges that, if solved, will create
a next generation of citizen developers who can independently create complete
software platforms and software ecosystems, and subsequently manage them
without the requirement for highly specialized technical knowledge.

References

1. Andreo, S., Bosch, J.: API management challenges in ecosystems. In: International
Conference on Software Business. pp. 86–93 (2019). https://doi.org/10.1007/978-
3-030-33742-1 8

2. de Bruin, T., Rosemann, M., Freeze, R., Kulkarni, U.: Understanding the main
phases of developing a maturity assessment model. ACIS 2005 Proceedings - 16th
Australasian Conference on Information Systems (2005)

3. Cabot, J.: Positioning of the low-code movement within the field of model-driven
engineering. Proceedings - 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS-C 2020 - Companion Pro-
ceedings pp. 535–537 (2020). https://doi.org/10.1145/3417990.3420210

4. De, B.: API Management. Apress, Berkeley, CA (2017).
https://doi.org/10.1007/978-1-4842-1305-6 2

5. de Feijter, R., Overbeek, S., van Vliet, R., Jagroep, E., Brinkkemper, S.: De-
vOps competences and maturity for software producing organizations. In: Enter-
prise, Business-Process and Information Systems Modeling. vol. 318, pp. 244–259.
Springer Verlag (2018). https://doi.org/10.1007/978-3-319-91704-7 16

6. Hora, A., Robbes, R., Valente, M.T., Anquetil, N., Etien, A., Ducasse, S.: How do
developers react to API evolution? A large-scale empirical study. Software Quality
Journal 26(1), 161–191 (2018). https://doi.org/10.1007/s11219-016-9344-4

7. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices:
The journey so far and challenges ahead. IEEE Software 35(3), 24–35 (2018).
https://doi.org/10.1109/MS.2018.2141039

8. Jansen, S.: A Focus Area Maturity Model for Software Ecosystem Gover-
nance. Information and Software Technology 118(November 2019), 106219 (2020).
https://doi.org/10.1016/j.infsof.2019.106219

9. Jansen, S., Brinkkemper, S., Cusumano, M.A.: Software ecosystems: Analyzing and
managing business networks in the software industry. Edward Elgar Publishing
(2013). https://doi.org/10.4337/9781781955635

10. Mathijssen, M., Overeem, M., Jansen, S.: Identification of Practices and Capabil-
ities in API Management: A Systematic Literature Review. Tech. rep., Utrecht
University (2020), http://arxiv.org/abs/2006.10481



API Management Maturity of Low-Code Development Platforms 15

11. Mathijssen, M., Overeem, M., Jansen, S.: Source Data for the Focus Area Matu-
rity Model for API Management. Tech. rep., Utrecht University (2020), https:

//arxiv.org/abs/2007.10611v3

12. Medjaoui, M., Wilde, E., Mitra, R., Amundsen, M.: Continuous API Management:
Making the Right Decisions in an Evolving Landscape. O’Reilly Media (2018)

13. Overeem, M., Jansen, S., Fortuin, S.: Generative versus interpretive model-driven
development: Moving past ‘It depends’. In: Pires, L., Hammoudi, S., Selic, B.
(eds.) Model-Driven Engineering and Software Development. MODELSWARD
2017. Comm. in Comp. and Inf. Science, vol. 880, pp. 222–246. Springer Inter-
national Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-94764-8 10

14. Poell, T., Nieborg, D., van Dijck, J.: Platformisation. Internet Policy Review 8(4),
1–13 (2019). https://doi.org/10.14763/2019.4.1425

15. Polák, M., Holubová, I.: REST API management and evolution using
MDA. In: C3S2E ’15: Proceedings of the Eighth International C* Con-
ference on Computer Science & Software Engineering. pp. 102–109 (2015).
https://doi.org/10.1145/2790798.2790820

16. Ralph, P., et al.: Empirical Standards for Software Engineering Research (2021),
https://arxiv.org/abs/2010.03525

17. Sanchis, R., Garćıa-Perales, O., Fraile, F., Poler, R.: Low-code as enabler of digital
transformation in manufacturing industry. Applied Sciences (Switzerland) 10(1)
(2020). https://doi.org/10.3390/app10010012

18. Van Steenbergen, M., Bos, R., Brinkkemper, S., Van De Weerd, I., Bekkers, W.:
The design of focus area maturity models. In: International Conference on Design
Science Research in Information Systems. vol. 662, pp. 317–332. Springer, Berlin
(2010)

19. Vincent, P., Iijima, K., Driver, M., Wong, J., Natis, Y.: Magic Quadrant for En-
terprise Low-Code Application Platforms. Tech. Rep. September, Gartner (2019)

20. Weir, L.: Enterprise API Management: Design and deliver valuable business APIs.
Packt Publishing Ltd (2019)


