Evolution of Low-Code Platforms

Michiel Overeem

SIKS Dissertation Series No. 2022-14

The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

ISBN 978-94-6458-189-8

© 2022, Michiel Overeem. All rights reserved.
Last update: 2022-07-29

Cover design: Mark van der Peet

Printing: Ridderprint | www.ridderprint.nl

www.ridderprint.nl

Evolution of Low-Code Platforms

Evolutie van Low-Code Platformen

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de
rector magnificus, prof.dr. H.R.B.M. Kummeling, ingevolge het besluit van het college
voor promoties in het openbaar te verdedigen op woensdag 15 juni 2022 des middags
te 2.15 uur door

Michiel Overeem

geboren op 15 juni 1984, te Baarn

Promotoren: Prof.dr. S. Brinkkemper
Prof.dr.ir. H.A. Reijers
Copromotor: Dr. R.L. Jansen

This research was partially accomplished with financial support from NWO in the
AMUSE project [project code 628.006.001], a collaboration between Universiteit Utrecht,
Vrije Universiteit Amsterdam, and AFAS Software, The Netherlands.

“Talk is cheap. Show me the code.”
Linus Torvalds

Preface

During my Master’s degree, I never had the intention of pursuing a PhD. I valued
industry with its practical outcome higher than the, what I thought to be, purely theo-
retical results of science. During the following years, however, I started to read more
and more scientific literature. So when an opportunity presented itself to combine the
job of an engineer and architect with scientific research, I decided to jump on it. This
jump turned out to be a journey of six and half years, which by no means was an easy
walk in the park.

At the time I did not know what I was getting into and, to be honest, I felt an im-
poster for 75% of the time. I learned many things while doing the scientific work
presented in this dissertation, not only about conducting research but also about aca-
demic writing and selling ideas to peers. More than once a paper was rejected because
the writing was not clear enough, I have learned the hard way. Although it was not
always easy to receive peer review feedback, the article always turned out better. This
might be the most important thing that I have learned about the way I work: I need
feedback from peers to do my best work. Unfortunately submitting an article does not
result in immediate feedback, making the process a bit slow. Luckily I received help
from many people, without whom I never got this far. Although I may forget someone,
I am obligated to give thanks where it is due.

This work would not have been in this state without the continuous support of
Slinger Jansen. Thank you for your enthusiasm, constant encouragement, and sharing
your experience with me throughout these years. I have learned so much about the
academic world and conducting science through you. The way you always spot an
opportunity is inspiring. Sjaak Brinkkemper and Hajo Reijers, you fulfilled your role
in the background, but I enjoyed our collaboration. You are both experienced scientists
willing to share your experience with a new generation, thank you.

I could not have done all of this without the opportunity given by Machiel de Graaf,
Rolf de Jong, and Dennis van Velzen. Thank you for allowing me to combine the
pursuit of a PhD with my job at AFAS. The flexibility, freedom, and support were
everything I could wish for. My colleagues at AFAS did not always understand why
anyone would do this for ‘fun’, but thank you for your interest, support, and patience.
Special thanks to the AFAS Focus teams: Buccaneers, Orioles, Braves, Red-Sox, and
Giants. This dissertation would not exist without all the work we did in the past
years. Special thanks to Janine and Delina for proof reading my dissertation, it is so
much better because of your feedback. Mark, a big thank you for creating the most
wonderful cover.

viii

Conducting scientific research is in no way a one-person job, but rather a community
effort. During my research I have gotten support from many different people. The
AMUSE group was an indispensable feedback group in the first years of my research.
Dennis, Erik, Henk, Guru, Siamak, Unal, and all the master students: thank you.
Henk, thanks for the support and the occasional review after leaving AFAS and the
AMUSE group! I am especially grateful to Marten, Max, and Sven for collaborating
on our joint papers. Although I was never an active member of the Organization
and Information group and the Software Ecosystems lab in Utrecht, I always received
supportive feedback and interest. Much of my research is based on the experience
and knowledge of industry experts and could not have been conducted without the
cooperation of these experts. Thanks also to all the (anonymous) reviewers; without
you, this work would not be what it is today. Most importantly, special thanks go to
the reading committee, Jordi Cabot, Michel Chaudron, Gabrielle Keller, Jurgen Vinju,
and Joost Visser for reviewing this dissertation.

I thank all my friends and family that have shown interest in the past years. I know
it took some time, but its done now. I could not have completed this work without
Mirjam, Ezra, and Silas. This dissertation marks the end of a period in which I have
been busy in the evenings and weekends. Thank you for giving me the space and time
to work on this project, but also for the distractions that you gave me when I needed it
(although I could not always see that at the time). I love you with all my heart. Now
I just have to find a new hobby ...

Michiel

Contents

Preface

I Introduction

1 Introduction

1.1
1.2
1.3
1.4

Innovations in Software Systems.
Research Approach . . .
Relevance and Empirical Ev1dence .
Dissertation Outline .

I Event Sourced Systems and Evolution

2 The Dark Side of Event Sourcing: Managing Data Conversion

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Introduction .
Command Query Respon51b1hty Segregatlon .
Related Work . .o

Event Store Upgrade Operatlons

Event Store Upgrade Techniques. .
Application and Data Upgrade Strategies .
Event Store Upgrade Framework.
Evaluation .

Conclusion and Future Work

3 An Empirical Characterization of Event Sourced Systems

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction

Research Approach: Construct1v1st Grounded Theory
Background

Event Sourcing In Practlce .

Event Stores and Event Sourced Systems .
Challenges Faced in Applying Event Sourcing.
Schema Evolution in Event Sourced Systems .
Discussion . .

Threats to Validity

3.10 Conclusion
3.11 Interview Protocol .

vii

. 10
. 15
.17

21

23

. 24
. 25
. 26
. 28
.31
. 33
. 35
. 38
.41

43

. 44
. 46
. 50
. 51
. 56
. 63
. 66
. 70
.71
.72
. 74

Data Package: Accompanying Anonymized Transcripts

I API Management in Software Ecosystems

4 API-m-FAMM: a Focus Area Maturity Model for API Management

4.1 Introduction

4.2 Related Work .

4.3 Research Approach . .

4.4 The API Management Focus Area Maturlty Model
4.5 Case Studies .

4.6 Discussion . . .

4.7 Focus Area Maturity Models .

4.8 Threats to Validity

4.9 Conclusion.

Data Packages: Systematic Literature Review and Source Data

5 API Management Maturity of LCDPs

5.1 Introduction

5.2 Research Method. .

5.3 Introduction of the API-m- FAMM

5.4 Case Studies .

5.5 Analysis of the Results . .
5.6 Engineering Research Challenges for LCDPS .
5.7 Threats to Validity

5.8 Conclusion.

Data Package: Evaluations of Four LCDPs

IV Evolution Supporting Architecture

6 Generative versus Interpretive MDD: Moving Past ‘It Depends’

6.1 Introduction

6.2 Context and Related Work

6.3 How SPOs Design and Develop MDEEs

6.4 Quality Characteristics of Model Execution Approaches
6.5 Case Study. .

6.6 Case Study Reflection

6.7 Discussion . .

6.8 Conclusion.

7 Proposing a Framework for Impact Analysis for LDCPs

7.1 Introduction .

7.2 Research Approach . .o

7.3 Impact Analysis for Low-Code Development Platforms
7.4 Case Study.

7.5 Analysis.

7.6 Discussion .

77

79

81

. 82
. 83
. 86
. 93
. 98
105
107
109
111

113

115

116
117
118
120
123
125
126
127

129

131

133

134
135
138
141
146
149
151
153

155

156
157
157
161
167
168

7.7 Related Work .
7.8 Conclusion.

V Conclusion

8 Conclusion

8.1 Answers to the Research Questions .

8.2 Reflections .

8.3 Future Work .
Bibliography
Summary
Nederlandse samenvatting
Publication List
Curriculum Vitze
SIKS Dissertation Series

Errata

169
170

171

173
173

178

181
184
207
209
211
215
217
227

Part 1

Introduction

Introduction

The last decade has shown a rapid growth of the software industry. Statements such
as “software is eating the world” [5] and “every company is now a software company”
are frequently used in business articles to emphasize the importance of software for
every company. To keep up with this growth, businesses are required to go through a
transformation, a digital transformation. In order to meet this new digital world they
will have to give automation through software solutions a central position in their
vision and policies.

However, these companies face two challenges when they undergo this digital trans-
formation. First, they have to attract IT professionals that are trained in software
development. In doing so they will quickly learn that there is a lack of trained IT per-
sonnel [263] and that scarcity is only expected to increase in the coming years [22].
Although investments are made to train more IT personnel we should not expect the
scarcity to be resolved any time soon. Secondly, the company needs to be organized in
such a way that software development is done efficiently. Methods such as Agile and
DevOps show that cooperation in cross-functional teams is crucial to decrease the time
to market and increase the quality of software solutions. Domain-Driven Design [74]
and the upcoming BizDevOps [82] emphasize the cooperation by bringing the business
side closer to the process of software development.

A recent development, Low-Code Platforms (LCPs) (a term first used by Richard-
son & Rymer [206]), could be the solution to both these challenges [156]. Through
the introduction of higher-level abstractions, such as domain-specific models or lan-
guages, these platforms enable citizen developers (professionals without training in
software development) to develop software systems. The term low-code emphasizes
that these platforms enable the development of software systems with a low effort
of coding. Enabling untrained professionals to participate in the software develop-
ment process not only means that fewer trained IT personnel are needed, but that the
business side is also automatically more involved in the development of the software.
Many of the ideas in LCPs appear to come from research domains such as Domain-
Specific Languages [56, 143], and Model-Driven Engineering (MDE) [128]. Although
both Bock & Frank [19] and Luo et al. [156] argue that there are no radical innova-
tions in LCPs, Cabot [28] sees LCPs as an opportunity to bring existing knowledge and
techniques under attention and use the new momentum to further the scientific knowl-
edge. Ruscio et al. [213] do see differences between MDE and LCPs such as platform

4| Chapter 1 — Introduction

(cloud versus desktop), users (citizen developers versus professional developers), and
domain (business applications versus more technical domains).

In order for LCPs to enable citizen developers to develop increasingly large and
complex software systems they need to incorporate approaches that enable the devel-
opment of such large systems. Examples of these approaches are architectural patterns
such as the microservice architecture style (MSA) and event-driven architectures. Both
these patterns provide new ways of modularizing large systems. Abstractions that im-
prove modularization are essential to manage the complexity of increasingly complex
and large software systems [191]. The idea behind the MSA style is to develop a
number of smaller (and thus less complex) interconnected software systems instead
of a large monolithic system [121]. An event-driven architecture assures that different
parts of a software system, such as microservices, communicate in an asynchronous
manner [87, 141]. This results in a loosely coupled system in which the different
microservices can be developed autonomously. Development teams can focus on a
smaller part of the system, lowering the complexity of their tasks. These architectural
patterns are already starting to find their way into the design of LCPs [202, 231],
which enables citizen developers to create scalable and manageable solutions.

In this software-driven world, software applications can no longer be seen as iso-
lated systems, by taking part in software ecosystems they are connected to the out-
side world [124]. Software ecosystems are used by Software Producing Organizations
(SPOs) to increase the value of their software for their customers through collaboration
with third parties. These ecosystems are formed around software platforms, which in
turn are managed by software platform orchestrators [126]. Software platforms are a
set of organizations collaboratively serving a market for software and services. Appli-
cation Programming Interfaces (APIs) are indispensable in these software ecosystems.
API management is, therefore, an crucial activity for these orchestrators. The third
parties that extend the software systems rely on these APIs, making it essential for
these APIs to be available and scalable.

We are convinced that LCPs that incorporate an event-driven MSA style, combined
with a strong support of software ecosystem enabling capabilities such as API manage-
ment, present a solution for the pressing challenges faced for companies that want to
take part in the new software-driven world. However, the development of new soft-
ware solutions through LCPs is not enough for these companies. As Visser [258] states:
“Software is not built to last; it is built to change.” Companies do not operate in a vac-
uum; they are part of a larger world inhabited by customers, suppliers, governments,
and competitors. These outside forces cause requirements and demands to change to
which the software needs to respond. In order to be successful, companies have to
invest in their software solutions for the long haul, making sure that they meet the
changing demands.

Software evolution is the activity of responding to these outside forces that result
in changing requirements. Lehman’s law of continuing change [151] is still valid: if
software does not respond to these outside forces, it becomes less useful. Vinju [257]
sees the ideas of MDE that underpin modern LCPs as a solution for the challenge
of software evolution. The higher abstraction used in LCPs results in more precise
specifications and requirements. These specifications and requirements can be used

|5

to guide the software evolution. In the future, this could enable the development of
trustworthy systems as discussed by Klein et al. [139].

LCP providers need to make sure that their platforms can support companies in
their digital transformation, therefore, they need to meet the requirements of these
companies that want to partake in the software-driven world. So what is or could be
the role of the software architect in all of this? The architect’s role is to lead the LCP
through the changes that the platform most likely will face [232]. The platform has
to apply modern architectural patterns, support the engineering of software ecosys-
tems, and support the maintainability of applications for the long haul without the
platform becoming increasingly complex and eventually collapsing under all its com-
plexity. Software architects responsible for LCPs need to guide the evolution of the
platform. Unfortunately for these architects, little actionable knowledge is available
on software evolution in LCPs.

LCPs enable citizen developers to create business-critical software systems. These
systems are increasingly large and complex and need to respond to a constant stream
of outside forces that require change. This dissertation contributes to the body of
knowledge available to software architects in three areas:

Event Sourced Systems and Evolution - Event-driven architectures enable the
development of large and complex software systems. Event sourcing [84] and
Command Query Responsibility Segregation (CQRS) [275] are two specific ar-
chitectural patterns applied in MSA style and event-driven architectures. How-
ever, little knowledge and tooling is available for software architects that need
to address software evolution.

API Management in Software Ecosystems - Software ecosystems enable the
enrichment of software systems by external complementors. API management
in software ecosystems is essential. If LCPs want to support the engineering
of software ecosystems they need to offer API management capabilities. There-
fore the software architects of LCPs need to plan and develop API management
capabilities so that the LCPs can grow in maturity.

Evolution Supporting Architecture - Changes that are made to either the LCP
or the applications on top of the L.CP have an impact on other parts of the plat-
form or even on complementors. Certain changes, for instance, require follow-
up changes, such as data conversion. Software architects need tools that allow
them to assess the impact of changes. These tools or techniques allow them to
design the processes that give them control of the software evolution.
These three areas are central in this dissertation, illustrated in the simplified archi-
tecture of the low-code platform in Figure 1.1. It hosts event sourced applications that
expose APIs to the complementors in a software ecosystem.

In the remainder of this chapter we introduce the central innovations of this disser-
tation, the research approach, and research questions.

6| Chapter 1 — Introduction

Complementors from
the Software Ecosystem

Interact with
Meta-mode
Runtime Platform

Conforms to Application v

| APIs |
Exports—pp] Model
A 4 A 4
v Command Query
— System System

T I
Model Stores events Stores state
transformations

Model designer

~—
A

4

Run-time B‘
model Interpreted by=

I

Reads events

Figure 1.1: A low-code platform, hosting an event sourced application part of a software ecosys-
tem. The model designer is used to create a model (conforming to a meta-model). The model
is transformed into a run-time model interpreted by an event sourced application. The appli-
cation is hosted on a run-time platform, which provides standardized capabilities such as load
balancing and monitoring. The application publishes APIs that are used by complementors in a
software ecosystem.

1.1 Innovations in Software Systems

Four central innovations are at the heart of this dissertation. These innovations present
new challenges in software evolution that need to be dealt with by software architects.
First, the evolution of the software industry is caused by trends such as Software-as-a-
Service [132], platformization, and the common utilization of cloud infrastructures. A
second innovation is the introduction of LCPs, which enable citizen developers to cre-
ate advanced software solutions by raising the level of abstraction to domain concepts
instead of software concepts. The third innovation is the introduction of so-called
event-driven architectures. These architectures give events a central role, enabling a
better match between the reality of business events versus system events. Finally, the
fourth innovation is the connectivity of software systems through published APIs that
enable third parties to access data and features. In this section we describe these four
innovations and state per innovation the research challenge that our work focuses on.

Section 1.1 — Innovations in Software Systems | 7

1.1.1 Product Software and Software-as-a-Service

The software industry has gone through several major transitions in the last half-
century. Initially, SPOs developed stacks of technologies on top of hardware platforms,
typically as monolithic systems. However, soon operating systems [48] that could
operate on multiple hardware platforms were introduced, and end-user applications
were developed by third parties to run on top of these operating systems.

The internet era enabled SPOs to use a networked infrastructure of different services
for offering their features online. The Software-as-a-Service model [35] was born,
making it possible for SPOs to offer their products to a larger group of customers,
generally at a lower cost of ownership. The customers no longer needed to own the
hardware or other software systems, such as the operating system, to operate the
software. With the introduction of Software-as-a-Service the SPO became not only
responsible for the software itself, but also for operating the software. The demands
for performant, reliable, and scalable software systems became ever more pressing,
which is one of the major concerns that we address in this dissertation.

Increasingly, traditional SPOs, i.e., organizations whose main activities include the
production of software, such as software vendors and open source organizations, are
developing platforms as a vehicle to increase the value of their software for their cus-
tomers through collaboration with third parties. This transformation from a product
towards a platform is called ‘platformization’ [193]. Platforms are a vehicle for soft-
ware ecosystems and are defined as a set of organizations collaboratively serving a
market with software and services [126]. These ecosystems form around software
platforms, which are managed by software platform orchestrators.

Research Challenge (RC1): Software systems are offered as a service, making SPOs
responsible for operating the software. Techniques for reliable systems that continue
operating through the deployment of new versions need to be designed and evaluated.

1.1.2 Low-Code Platforms

The first use of the term low-code is attributed to the Forrester report [206] on de-
velopment platforms for customer-facing applications. LCPs are defined in the report
as “Platforms that enable rapid application delivery with a minimum of hand-coding.”
The two essential characteristics hereof are the increase of software delivery and the
decrease of the amount of coding required. The term no-code is closely related to
low-code; in general it is regarded as a particular flavor of LCP.

LCPs introduce an abstraction that makes the development of software more effi-
cient and the resulting software of higher quality. The Forrester report claims three
benefits for LCPs: accelerated application delivery, quicker response to customer feed-
back, and support for multiple platforms. A recent study by Mendix [165] claims that
LCPs result in 53% less costs, 56% more speed, and 58% more revenue. However,
the work of Luo et al. [156] paints a more nuanced picture of the benefits of LCPs by
also listing a number of liabilities. While initially these platforms have started with
relatively simple applications that automate a single task, the applications targeted
nowadays are becoming increasingly complex. Examples are enterprise services [281],
Internet of Things applications [189], and enablers of digital transformations in the

8| Chapter 1 — Introduction

manufacturing industry [219]. Sahay et al. [217] presents an elaborate comparison of
different LCPs that shows that they target increasingly complex application domains
and systems. Developers are invited to develop business critical systems that are con-
nected to a landscape of other systems in so-called software ecosystems.

The work of Bock & Frank [18] shows that there is no new technology in LCPs,
but they do integrate different technologies in a new way. The origin of LCPs can be
traced back to model-driven engineering, as stated by Cabot [28]. He regards low-
code as a synonym for model-driven engineering, while both Bock & Frank [18] and
Luo et al. [156] see LCPs as a bundling of existing technologies such as model-driven
engineering, database management systems, and dependency managers.

One of the technologies that is central in LCPs is model-driven development (MDD).
The approach taken by LCPs is the model-centric approach [24]: a software system is
derived automatically from a model. The term Model-Driven Engineering Environments
(MDEE) as used in Chapter 6 should be interpreted as a synonym for LCPs.

A specific characteristic of LCPs is that they target the citizen developer [177]. These
developers do not have training in software engineering but do possess specific domain
knowledge in their field. LCPs enable these professionals to build applications that
serve a specific need in their domain. Mendix, one of the leaders in the low code
market, explicitly names the citizen developer as a solution to the growing shortage
of professional software engineers [165]. This makes LCPs an important technology
to invest in.

In their overview of Product Software, Xu & Brinkkemper [273] discuss the key dif-
ferences between different categories of software. LCPs fall in the development tooling
category. Well-known LCPs such as Mendix, OutSystems, and Pega are development
tools that are licensed to many users. Applications built on top of these LCPs are gen-
erally tailor-made software systems. That is what LCPs do well: they make it more
accessible for companies to develop software.

Research Challenge (RC2): LCPs are increasingly used to build business-critical
systems and companies depend on the stability and reliability of the platform. Changes
made to the platform and applications threaten these characteristics; the evolution of
the platform and applications need to be controlled to mitigate these risks.

1.1.3 Event-Driven Architecture

The core idea of event-driven architectures is that the components in a software sys-
tem communicate through events. These events can originate from within or outside
systems, and components react to these events [32]. Event sourcing takes this idea of
events and applies it to the state management in a system. Instead of storing the cur-
rent state of a system, every change to the state is recorded as an event. The current
state can be built by the systems as a derivation of the events. There can be multi-
ple derivations that each present the state in a different manner. This increases the
flexibility of the system.

Command query responsibility segregation (CQRS) originated together with event
sourcing from the Domain-Driven Design (DDD) community. The foundations were
laid by Meyer [169] in the Command-Query Separation (CQS) principle. He defined a
command as “serving to modify objects” and a query as “to return information about ob-

Section 1.1 — Innovations in Software Systems | 9

jects,” or informally worded: “asking a question should not change the answer.” This
principle is applied in the CQRS pattern: commands are accepted by the command-
side; there, it produces events that are processed by the query-side to answer the
queries it receives. Figure 1.1 illustrates this principle.

The command- and query-sides use their own data store and data model. To vali-
date and accept commands, the command-side uses a data model optimized for that
particular task. The query-side often uses a more versatile and diverse range of data
models and stores to answer questions, such as a full-text index together with a rela-
tion database.

The changes accepted on the command-side are communicated to the query-side
trough events. This communication is where CQRS and event sourcing are combined
(although it is not strictly necessary to combine the two patterns). If the command-
side uses event sourcing as a data model, the query-side can consume those recorded
events. The query-side often processes these events asynchronously, creating a weak
coupling between the two sides. This results in two independent and autonomous
components. The benefit is that these components do not influence each other from
a development and operations perspective, i.e. the performance of the command-side
is independent of the query-side. However, this does lead to eventual consistency,
which Vogels [261] defines as “when no updates are made to the object, the object
will eventually have the last updated value.” Eventually, the query-side will reflect the
events produced by the command-side but there are no guarantees on how fast this
will be done.

Eventual consistency is not the only challenge in event sourced systems. The most
prominent challenge is the evolution of the data model. As every state change is
recorded, the system should be able to read and process all of these events for eternity.
When the software system can no longer read and process all of the events, the state
can no longer be re-hydrated.

Research Challenge (RC3): Event Sourcing and CQRS are identified by industry as
techniques for performant, reliable, and scalable software systems. However, the evo-
lution of event sourced systems require new techniques and strategies that software
architects can employ.

1.1.4 Software Ecosystems and APIs

As already mentioned, more and more SPOs are turning their software products into
platforms. This enables them to create more value by leveraging the solutions devel-
oped by other organizations. To form software ecosystems, enterprises need to open
up and provide access to their data through APIs [53, 266]. APIs are defined by De
[53] as “a software-to-software interface that defines a contract for applications to
communicate with one another over a network, without the need for any user inter-
action.” For LCP providers it is advantageous to enable the design, development, and
publishing of APIs. First of all, this will enable their customers to develop software
platforms that other SPOs can enrich. Secondly, support for APIs also enables their
customers to build more complex software systems by integrating several smaller soft-
ware applications with each other. APIs enable the modularization of LCP applications,
increasing the maintainability of these solutions.

10| Chapter 1 — Introduction

Challenges in software ecosystems such as stability, security, and scalability are re-
lated to API management capabilities [6]. API management is the activity that enables
organizations to design, publish, and deploy their APIs for (external) developers to
consume. When SPOs transform their software systems from products to platforms,
and offer them as a service, it becomes crucial to not only implement basic and stan-
dard platform features but also support advanced platform features. SPOSs must eval-
uate the maturity of their API management capabilities and plan improvements. The
way in which they manage their APIs might turn out to be one of the determining fac-
tors for the success of their platform. Such an assessment should not only state how
mature the API management capabilities are but it should also provide a roadmap for
improvement.

Research Challenge (RC4): More and more SPOs turn their software products into
platforms and, at the same time, allow external complementors to access their plat-
forms. To effectively grow their system into an ecosystem, they need to be supported
in the management of their integration capabilities.

1.2 Research Approach

With LCPs targeting increasingly more complex software applications and systems,
new research challenges arise. Business-critical software systems model activities from
the real world and are subject to constant change [151]. Constant change requires con-
trol over the evolution of these software systems. These complex applications function
within a larger ecosystem and thus have to deal with integration and connectivity is-
sues while undergoing change. Our research focuses on the evolution of LCPs and
their applications.

The challenge that software evolution in LCPs presents to software architects is
the topic of this dissertation. We conduct our research in the context of LCPs that
support the development of cloud-based software ecosystems (see Figure 1.1). Our
research on how evolution in an LCP can be managed is done in three parts. Chapters 2
and 3 discuss how event sourcing can be applied to create performant, reliable, and
scalable software systems and how software architects can evolve these systems. The
management of APIs within a software ecosystem is discussed in Chapter 4, while
Chapter 5 discusses how maturing the API management capabilities of an LCP can
enable citizen developers to grow software ecosystems. The last chapters, 6 and 7,
present how software architects can create evolution supporting architectures for LCPs.
We visualize the different parts in Figure 1.2.

1.2.1 Research Questions

As stated previously, the research presented in this dissertation is divided into three
parts: Event Sourced Systems and Evolution, API Management in Software Ecosys-
tems, and Evolution Supporting Architecture. The research questions that guided
the research are divided into these three areas.

Section 1.2 — Research Approach | 11

Complementors from
the Software Ecosystem

Interact with

Low-Code Platform

Implemented by———p|
Application v
| APIs |
Architectural Decisions
A 4 A 4

Command Query

System System
Stores events Stores state

Reads events

Figure 1.2: This dissertation studies the challenge of software evolution in LCPs and the applica-
tions developed with these platforms. We zoom in on three areas: (1) evolution in event stores
and event sourced systems, (2) APIs published by applications, and (3) architectural decisions
that support software evolution.

Event sourcing is a relatively new pattern and has not received much attention
in existing research. However, software architects appear to identify the pattern as
beneficial for large software systems. The main research question for this research
area is

MRQ1 - What are the challenges software architects face in the evolution of
event sourced systems and how can they be mitigated?

We will answer this question by answering four sub-research questions that focus
on the pattern as perceived by industry and on existing techniques for evolution of
event stores. These questions are answered in Chapters 2 and 3, where we discuss the
pattern in general and the benefits and challenges that are experienced.

SRQ1.1 - What types of systems apply event sourcing and why?

SRQ1.2 - How should event sourced systems be defined?

SRQ1.3 - How should event sourced data structures be evolved?

SRQ1.4 - What are the challenges faced by software engineers in applying
event sourcing?

12| Chapter 1 — Introduction

Collaborating systems within a software ecosystem, or microservices within an MSA
system, use APIs to communicate. API management is an essential activity in these
systems because the quality of communication is largely dependent on the quality of
the APIs. Evolution introduces new challenges as the different parties communicating
undergo different changes at different speeds. Our focus is directed at the support of
API management activities offered by LCPs to their customers, the citizen developers.

MRQ?2 - What kind of support for API management practices is offered by
LCPs, and how should they evaluate and improve that support?

This question is answered by two separate sub-questions. First, we look at the
evaluation and improvement of APl management practices in general. The results of
that research are applied to API management support in LCPs. These questions are
answered by the research discussed in Chapters 4 and 5.

SRQ2.1 - How should SPOs that expose their APIs to third parties evaluate
their API management practices?

SRQ2.2 - How mature are the API management capabilities that LCPs offer
to their customers?

Software architecture is understood as the composition of a set of architectural de-
sign decisions [122]. These decisions influence many operational characteristics of a
software system, such as reliability and scalability. However, they also influence the
manageability of a system as it undergoes evolution.

MRQ3 - How should the architecture of an LCP support the evolution of both
the platform as well as the applications?

In the last two chapters, we discuss how software architectures can support evo-
lution. The first question is an example of how SPOs can make informed decisions
to achieve the quality characteristics that are demanded. As explained above, LCPs
combine different existing technologies, one of them being MDE. In MDE, a model
drives the software, i.e. a model is executed to produce the running software. Dif-
ferent approaches to this execution are possible, with different quality characteristics.
We conclude the dissertation with research on the overall process of change impact
analysis and its role in LCPs. These questions are answered in Chapters 6 and 7:

SRQ3.1 - How should SPOs make an informed decision between a generative
or interpretive model execution approach?

SRQ3.2 - What is the role of change impact analysis in an LCP?

1.2.2 Research Methods Applied in this Thesis

Software engineering is a multidisciplinary field that crosses many social and tech-
nological boundaries [66]. To effectively study software evolution in LCPs different
research methods are applied. While each chapter details the specifics of the method
used, we summarize the different methods in this section, and in Table 1.1 we present
the relation between the chapters of this dissertation, the research questions, and the
research methods applied.

Section 1.2 — Research Approach |13

. Research Methods
Ch. | Research Questions - -
Design | Case Expert Systematic Grounded
Science | Study | Interview | Literature Review | Theory
2 1.3 v v
3 1.1,1.2,1.3,1.4 v v
4 2.1 v 4 v
5 2.2 v v
6 3.1 v v v v
7 3.2 v v

Table 1.1: The mapping between the research questions and research methods that have been
employed in each chapter (Ch.).

Design Science

In Design Science Research artifacts are built to solve problems in information sys-
tems [267]. These artifacts have different forms, such as methods, algorithms, and
software systems. Proposed questions in design science research are answered through
the creation and evaluation of artifacts. Design science research proposes solutions for
design problems and seeks answers to knowledge problems. The acquired knowledge
should contribute to the body of scientific evidence.

According to Hevner & Chatterjee [106] design science research has two interpreta-
tions: ‘design as research’ and ‘researching design.” Ralph & Wand [205] label these
the science of design (in which design is the topic of inquiry) and design science. De-
sign as research is the idea that scientific knowledge is gathered through innovative de-
sign. The proposed artifact attempts to solve a problem, but in the attempt knowledge
is accumulated. The other interpretation studies design, designers, and the process
of design. Using the label ‘design science research’ for two different interpretations
could be problematic. Therefore Ralph [203] proposes the label ‘engineering research’
to identify the design as research interpretation. This label is also used in the proposed
Empirical Standards for Software Engineering Research [204].

Design science research is an established paradigm in the field of information sys-
tems [107]. Engstrom et al. [69] illustrate how the design science paradigm can also
be useful to showcase the contributions of software engineering research. Software
engineering research is, similar to design science research, solution oriented and pro-
vides design knowledge.

In this dissertation we apply design science most prominently in Chapter 4. A ma-
turity model is constructed to communicate knowledge of practices and processes in
a particular domain [14]. A focus area maturity model consists of a sequence of ma-
turity levels that represents an anticipated, desired, or typical evolution path for an
organization [235, 236]. To establish an organization’s degree of maturity in the func-
tional domain, the capabilities in the model are assessed through a set of questions.
When the current maturity is known, the organization can be guided towards incre-
mental development of the domain. The API-m-FAMM attempts to solve the problem
of measuring and developing API management maturity. The iterative approach taken
(through a systematic literature review, expert interviews, and case studies) shows
how the design of the artifact emerged.

14| Chapter 1 — Introduction

Case Study

According to Yin [274], case studies are useful when you want to understand a real-
world case, and such an understanding is likely to involve an important context. Un-
like experiments, case studies take the full context into account in order to understand
contemporary phenomena. Case studies come in different lengths (brief or longitudi-
nal), but all present a detailed account of a phenomenon at a site.

Ralph et al. [204] identify different types of case studies, of which exploratory and
evaluative case studies are the most relevant for this dissertation. Case studies are a
valuable tool for studying a phenomenon or an artifact in the context. Chapters 4, 5,
6, and 7 apply this method.

Expert Interviews

Expert interviews are an essential technique for qualitative research. In this disserta-
tion, expert interviews are used for both artifact construction and evaluation (Chap-
ters 2 and 4), as well as general knowledge acquisition (Chapter 3).

The experts interviewed in Chapters 2, 4, and 6 were selected through purposive
sampling [73]. This non-randomized sampling technique refers to the deliberate
choice of a participant due to the qualities the participant possesses. In both cases
the interviewees were experts in, respectively, event sourcing, APl management, and
model-driven development.

For the exploratory research conducted in Chapter 3 a randomized set of experts was
required. Therefore, we invited volunteers through different channels, such as Google
Groups and Slack channels. We identified these people based on our experience in the
event sourcing community. In addition to these invitations we also contacted a number
of well-known experts. Finally, we executed ‘interview snowballing”: we asked each
interviewee for further expert references.

None of the interviewees were compensated for their cooperation. Each interview
was recorded and reviewed by a minimum of two authors. The interviews held for
Chapter 3 were fully transcribed and made available [188].

Our experience in conducting interviews matches that of Elisabeth Hove & Anda
[67]: it is time-consuming. However, we found that the experts were more than
willing to take the time and share their information with us.

Systematic Literature Review

We conducted two systematic literature reviews which are presented in this disser-
tation. These reviews summarize and synthesize knowledge from a prior body of
research. In Chapter 4 we applied the guidelines from Okoli [176] and Kitchen-
ham & Charters [138] to design and populate an early version of the API-m-FAMM,
our maturity model for API management. We collected the literature by searching
scientific libraries for relevant keywords, and further narrowed down the results by
applying inclusion and exclusion criteria. The review process and the results are made
available [158].

For the research in Chapter 6 we applied the snowballing approach as described by
Wohlin [270]. In this case keywords were difficult to construct because of the broad
range of topics. Instead we selected an initial set of papers relevant to our study and
followed both forward and backward references.

Section 1.3 — Relevance and Empirical Evidence | 15

Grounded Theory

Adolph, Hall & Kruchten [2] explain how Grounded Theory (GT) as a method is useful
for research in areas that have not been studied before. GT is a methodology that is
used to induce theories from empirically collected data (for instance, through inter-
views or case studies). Constructivist GT [33] assumes that neither data nor theories
are discovered but are constructed by the researchers out of the interactions with the
field and its participants.

We present our application of GT in Chapter 3, in which we explore event sourced
systems and improve our understanding of the pattern. Our research has an ex-
ploratory nature and, therefore, GT is a useful approach for this research. We knew
we would find a description of the pattern, but were not aware what other concepts,
challenges, and motivations would be identified.

1.3 Relevance and Empirical Evidence

In this dissertation we build knowledge that furthers the research on software evo-
lution in LCPs, as well as practical tools that support the SPOs that develop these
platforms.

Similar to Bider, Johannesson & Perjons [16] we believe that empirical research and
design science research provide a suitable combination to balance these two goals.
Research that only focuses on knowledge runs the risk on being irrelevant for both
other researchers and practitioners as well. However, research that only focuses on
practical tools might end without any scientific contribution at all.

This dissertation contributes to the scientific body of knowledge on LCPs and in-
formation systems in general by answering the research questions as stated in Sec-
tion 1.2.1. Chapters 2 and 3 presents empirically gathered knowledge on event sourced
systems based on interviews with 25 industry experts. The API-m-FAMM model in
Chapter 4 presents a compiled body of knowledge on API management capabilities.
This knowledge is based on a synthesis of existing literature and interviews with in-
dustry experts. Chapter 6 compiles knowledge from existing literature into a decision
support model that explains how different model execution approaches influence the
quality characteristics of a software system. Finally, the proposed framework from
Chapter 7 is based on evidence empirically gathered during the development of an
LCP.

Not only do we contribute to scientific knowledge, we also contribute to the develop-
ment of research methods. In Chapter 3 we show how Grounded Theory can be used
to describe a software design pattern and uncover its benefits and liabilities. Existing
methods for the development of maturity models are extended in Chapter 4 where
we show how design science methods can be used to develop and evaluate the con-
structed maturity model. The use of a do-it-yourself kit shows how the implementation
of maturity models in industry can be improved.

Next to advancing the scientific knowledge and methods, we also aim to produce ar-
tifacts that advances the industry. The framework for event schema evolution from
Chapter 2, the API-m-FAMM from Chapter 4, the decision support framework for

16| Chapter 1 — Introduction

model execution (Chapter 6), and the proposal for an impact analysis framework
in Chapter 7; all these artifacts communicate scientific knowledge. In line with the
challenges stated by Wohlin [269], the exchange of knowledge should be the focus of
academia and industry collaboration.

These artifacts not only compile and communicate knowledge, they are also di-
rectly actionable. The framework for event schema evolution is utilized in SB+; an
event sourced ERP system developed on top of an LCP (more details follow in the
remainder of this chapter). Chapter 6 details a case study in which the decision sup-
port framework for model execution is applied during the development of an LCP. The
API-m-FAMM demonstrates how SPOs can improve their API management maturity,
and experts indicate that the model appears to be easy to use, useful, and effective.
These artifacts communicate the benefits in an actionable manner, adhering to the best
practices listed by Garousi, Petersen & Ozkan [92].

1.3.1 Partnership between Academia and Industry

The research carried out for this dissertation was executed within the AMUSE research
project. This research project was an academic collaboration between the Universiteit
Utrecht and Vrije Universiteit Amsterdam, and the industry partner AFAS Software.
The goal was to address software composition, configuration, deployment, and mon-
itoring on heterogeneous cloud ecosystems through ontological enterprise modeling.
The questions, problems, and challenges originated from the development of the new
ERP system that AFAS Software is developing. In addition to the real-world challenges
that were encountered while developing the ERP system, we were also aware of an ex-
tra tension in our research between industry relevance and scientific novelty. Although
academia should be aware of this tension, we strongly believe in the importance of
partnership between academia and industry.

Kruchten et al. [146] argue that research that is aware of the context (often industry,
real-world context) leads to scientific contributions that have impact on industry and
society. Research that lacks this context is at risk of leading to contributions that are
not adaptable and usable. This in turn could harm the impact that the research has on
society. In this dissertation, the research done on event sourcing [186, 187] is an ex-
ample of context aware research. Event schema evolution was a real-world challenge
experienced not only by AFAS Software, but through the community as a whole. Our
initial research [186] led to invitations to speak at user groups and conferences (See
the listing on page 212 for a complete list). These talks led to valuable interactions
that we used in our follow-up research [187].

Another aspect of the partnership between academia and industry is the communi-
cation of research results. In our experience, scientific knowledge is often scattered
among many articles or hidden within theoretical and abstract contributions. In our
work on API management [185], model execution approaches [182], and impact anal-
ysis [181] we aimed to synthesize the already available knowledge in a form that
serves industry. Artifacts as decision support frameworks and maturity models are
well suited to communicate these kinds of results. Not only do they categorize and
present the knowledge in a clear format, they also provide actionable information to
industry. This dissertation’s contribution hopefully furthers the partnership between

Section 1.4 — Dissertation Outline |17

academia and industry as an example of actionable research results.

1.3.2 AFAS Software

This dissertation would not have been possible without the support of my employer,
AFAS Software, which provided significant amounts of knowledge about the process of
developing evolvable and scalable software. This Dutch SPO, a privately held company,
is based in Leusden, the Netherlands (with additional offices in Belgium, Curacao, and
Aruba). It currently employs over 500 people, and generated 191 million of revenue
last year (2020). AFAS’ main software product is called Profit, which is an ERP system
consisting of different modules such as Taxes, Finance, HRM, Order Management,
Payroll, and CRM. This product has over 2 million users across 11.000 organizations of
all sizes, ranging from companies with a single employee to companies with thousands
of employees.

After 25 years, AFAS recently launched a new version of its ERP system, which
is called SB+ (which stands for small business plus). The development of SB+ was
started in 2010 as an internal research project with the goal of exploration. This ex-
ploration evolved into the development of an internal LCP, called AFAS Focus. This plat-
form is the context of the research carried out in this dissertation as well as the AMUSE
project. AFAS Focus uses an ontological enterprise model [228] (the platform was
formerly called NEXT). The system is cloud-based and its architecture applies event
sourcing and Command-Query Responsibility Segregation (CQRS) to satisfy quality
characteristics such as availability and responsibility.

At the start of 2020, after nine years of development, the first customers started
using SB+ for their day-to-day accounting. In 2021 the product was launched to the
public!. By the end of 2021 the initial group of companies had expanded to over two
hundred companies using SB+. In the years to come, this number will rapidly increase
into the thousands.

1.4 Dissertation Outline

The chapters in this dissertation are formed by independently published articles. These
articles form a portfolio of our research on software evolution in LCPs. This section
gives a brief overview of the chapters and their contribution and explain how the
original article came into being. As explained in the previous sections, the six main
chapters are grouped into three parts and every part discusses a specific evolution
topic. Chapters 2 and 3 discuss the topic of data evolution in event sourced systems.
The evolution and management of APIs in software ecosystems are discussed in Chap-
ters 4 and 5. Finally, Chapters 6 and 7 discuss the architecture and processes around
software evolution.

Chapter 1 - Introduction

The first chapter starts with an introduction of the main topics of this dissertation. It
further states the research questions, explains the research methods, and discusses the
relevance of this research.

IThe (Dutch only) product website can be visited: https://kleinzakelijk.afas.nl/.

https://kleinzakelijk.afas.nl/

18| Chapter 1 — Introduction

Chapter 2 - The Dark Side of Event Sourcing: Managing Data Conversion

Event searching is a relatively new architectural and data modeling pattern. Histor-
ically there had been no research on event sourcing that discussed how to approach
event schema evolution. Chapter 2 discusses several techniques found in literature
and links them to event schema operations and upgrade strategies. We formulated a
framework for event schema evolution and validated that with three experts.

This chapter was originally published as a conference article [186] and is based on a
research project collaboratively performed with Marten Spoor, who did an internship
at AFAS Software.

Chapter 3 - An Empirical Characterization of Event Sourced Systems

In this study we address the lack of event sourcing knowledge in scientific literature by
presenting the results of interviews with 25 event sourcing practitioners. We applied
Grounded Theory to extract a detailed pattern description. This description discusses
rationale for applying event sourcing, characteristics of 19 event sourced systems, the
relation to other patterns, five challenges that practitioners experience, and finally an
overview of event schema evolution techniques.

The chapter was originally published as a journal article [187]. The first author
conducted all of the interviews, while the transcription was done by the first and third
author. Coding and categorization was done by the first, second, and third author.
The transcriptions, along with our codes and categories, were anonymized and made
publicly available [188].

Chapter 4 - API-m-FAMM: a Focus Area Maturity Model for API Management

In Chapter 4 we present the results of our study on API management and its relevance
to software ecosystems. To further the scientific knowledge we formalize a Focus
Area Maturity Model on API management: the API-m-FAMM. This model synthesizes
available knowledge on API management from both scientific and grey literature, and
adds new knowledge that we gathered through expert interviews. Through a do-
it-yourself assessment kit we evaluate the usability and relevance of the model for
practitioners.

We applied the method for developing Focus Area Maturity Models as presented by
Steenbergen et al. [235, 236], and described the different iterations and the relevant
source data in detail. This chapter is published as a journal article [185], and both
the results of the literature review as well as the details of the different intermediate
versions are publicly available [158, 159]. This work is based on a research project
collaboratively performed with Max Mathijssen, who did an internship at AFAS Soft-
ware.

Chapter 5 - API Management Maturity of LCDPs

In Chapter 5 we apply the API-m-FAMM to assess LCPs. We selected four different
platforms based on the list of LCPs from Vincent et al. [256]. We assess their matu-
rity in API management through case studies based on interviews and available docu-
mentation. Based on the evaluations we discuss the importance of API management
capabilities for LCPs in the enabling of the development of software ecosystems.

Section 1.4 — Dissertation Outline |19

This chapter was originally published as a conference article [183], and the evalua-
tion data was made publicly available [184].

Chapter 6 - Generative versus Interpretive MDD: Moving Past ‘It Depends’

Chapter 6 is an example of a study that aims to bring scientific knowledge closer to
practitioners. While model-driven development is a well-established research topic,
the scientific articles are not always aimed at supporting platform developers. In this
chapter we synthesize existing literature on model-driven development into a decision
support framework for model execution approaches. This framework supports LCP
developers in the design of their platform by presenting scientific knowledge in an
applicable form.

The chapter was originally published [182] as an extension of a conference arti-
cle [180]. The survey of software producing organizations is based on the thesis work
of Sven Fortuin.

Chapter 7 - Proposing a Framework for Impact Analysis for LDCPs

Chapter 7 proposes an impact analysis framework, based on observations made dur-
ing the development of a low-code framework. Applications developed with an LCP
are impacted by many different components and artifacts. The proposed framework
solidifies this impact in a framework to enable reasoning and analysis. Through a case
study we show how this framework can support practitioners while simultaneously
serving as a carrier for available scientific knowledge.

This chapter was originally published as a workshop paper [181].

Chapter 8 - Conclusion

In the final chapter we summarize our contributions, answer the research questions
posed in Section 1.2.1, and discuss future work.

Part 11

Event Sourced Systems and
Evolution

The Dark Side of Event Sourcing:
Managing Data Conversion

Evolving software systems include data schema changes, and because of those
schema changes data has to be converted. Converting data between two different
schemas while continuing the operation of the system is a challenge when that sys-
tem is expected to be always available. Data conversion in event sourced systems
introduces new challenges, because of the relative novelty of the event sourcing ar-
chitectural pattern, because of the lack of standardized tools for data conversion,
and because of the large amount of data that is stored in typical event stores. This
paper addresses the challenge of schema evolution and the resulting data conver-
sion for event sourced systems. First of all a set of event store upgrade operations is
proposed that can be used to convert data between two versions of a data schema.
Second, a set of techniques and strategies that execute the data conversion while
continuing the operation of the system is discussed. The final contribution is an
event store upgrade framework that identifies which techniques and strategies can
be combined to execute the event store upgrade operations while continuing oper-
ation of the system. Two utilizations of the framework are given, the first being
decision support for the upfront design of an upgrade system for event sourced sys-
tems, the second being a framework for an automated upgrade system that can be
used for continuous deployment. The event store upgrade framework is evaluated
in interviews with three renowned experts in the domain and has been found to
be a comprehensive overview that can be utilized in the design and implementa-
tion of an upgrade system. The automated upgrade system has been implemented
partially and applied in experiments.

This work was originally published in Proceedings of the 24th Conference on Software Analysis,
Evolution, and Reengineering (SANER 2017), titled ‘The Dark Side of Event Sourcing: Managing
Data Conversion’. It was co-authored by Marten Spoor and Slinger Jansen.

24 | Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

2.1 Introduction

Applications that do not evolve in response to changing requirements or changing
technology become less useful, as Lehman [152] in his law of continuing change stated
many years ago. Neamtiu & Dumitras [173] show that this is a reality for modern
cloud systems as many of them update more than once a week. Chen [34] describes
how they applied continuous delivery on multiple projects to achieve a shorter time
to market, and an improved productivity and efficiency. Several technical challenges
including seamless upgrades are identified by Claps, Berntsson Svensson & Aurum
[37]. The fast pace of evolution and deployment of cloud systems conflicts with the
requirement to always be available and support uninterrupted work. For modern cloud
systems to support the fast pace of evolution, upgrade strategies that are fast, efficient,
and seamless have to be designed and implemented.

One of the architectural patterns that in recent years emerged in the development
of cloud systems is Command Query Responsibility Segregation (CQRS). The pattern
was introduced by Young [275] and Dahan [50], and the goal of the pattern is to han-
dle actions that change data (commands) and requests that ask for data (queries) in
different parts of the system. By separating the command-side (the part that validates
and accepts changes) from the query-side (the part that answers queries), the system
can optimize the two parts for their very different tasks.

Young [276] describes CQRS as a stepping stone for event sourcing. Event sourcing
is a data storage model that does not store the current (or last) state, but all changes
leading up to the current state. Fowler [84] explains event sourcing by comparing it
to an audit trail: every data change is stored without removing or changing earlier
events. The events stored in an event store are stored as schema-less data, because
the different events often do not share properties. A store with an explicit schema
would make it more difficult to append events in the store to a single stream. Data in
schema-less stores is not without schema, but the schema is implicit: the application
assumes a certain schema. This makes the problem of schema evolution and data
conversion more difficult as observed by Scherzinger, Klettke & Storl [225]. Schema-
less data is more difficult to evolve as the store is unaware of structure and thus
cannot offer tools to transform the data into a new structure. Relational data stores
that have explicit knowledge of the structure of the data can use the standardized
data definition language (DDL) to upgrade the schema and convert the data. Another
problem in the evolution of event sourced systems is the amount of data that is stored.
Not only the current state, but also every change leading up to that state is stored in
the system. This huge amount of data makes the problem of performing a seamless
upgrade even more important: upgrades may need more time, but they are required
to be imperceptible.

The frequency of schema changes is researched by Qiu, Li & Su [201]. Although
the storage model is different and the architectural pattern is relatively new there is
no indication that (implicit) schema changes in event sourcing are less of a challenge.
Recovery of the implicit schema does not solve the problem for event stores, it only
helps to find the right operations to transform into a new schema.

This paper answers the question “How can an event sourced system be upgraded effi-

Section 2.2 — Command Query Responsibility Segregation |25

ciently when the (implicit) event schema changes?” This question is answered by defin-
ing event store upgrade operations that can be used to express the data conversion
executed by the upgrade of an event store in Section 2.4. Existing techniques that
are capable of execution these operations to convert the events are discussed in Sec-
tion 2.5. The efficiency of these techniques is judged on the basis of four quality
attributes: functional suitability, maintainability, performance efficiency, and reliabil-
ity. In Section 2.6 the deployment strategies, categorized by application and data
upgrade strategies are discussed that lead to an upgrade system with zero downtime.
The final framework that describes how to design and implement either an ad-hoc
upgrade strategy, or a fully automated upgrade system, is proposed in Section 2.7.
The final framework is evaluated by three Dutch experts in the field of event sourcing,
each having six or more years of experience in building and maintaining event sourced
systems, and these results can be found in Section 2.8. Section 2.9 summarizes the
contributions and states future work.

2.2 Command Query Responsibility Segregation

The foundations of CQRS were laid by Meyer [169] in the Command-Query Separation
(CQS) principle. He defined a command as “serving to modify objects” and a query
is “to return information about objects,” or informally worded as “asking a question
should not change the answer.” Figure 2.1 shows the CQRS pattern: commands are
accepted by the command-side and produce events which are processed by the query-
side. The query-side projects these events into a form that is suitable for querying and
presenting. The command-side and the query-side both have their own data store: the
first store is used to maintain data that is used in validating requested changes, and
the second store is used to retrieve data for displaying or reporting.

command event query

e | command-side

A4

query-side <«

Figure 2.1: The architectural pattern CQRS.

The command-side communicates with the query-side by asynchronously sending
events. These events are used by the query-side to build a view of the state that can be
used to query and present data. By doing this asynchronously the query-side does not
influence the performance of the command-side. However, this does result in eventual
consistency. This is a weaker form of consistency that Vogels [261] defines as “when
no updates are made to the object, the object will eventually have the last updated
value.” The system guarantees that the query-side eventually will reflect the events
produced in the command-side. However, there are no guarantees on how fast this
will be done. A system with a large delay is unfeasible, because in that case queries
will often return data that does not reflect the latest changes sent to the command-side.
There are difficulties introduced by eventual consistency, such as returning items to a
client that are in fact already deleted through commands sent to the command-side.

26| Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

The patterns to overcome this difficulty and others are out of scope for the current
paper.

The asynchronous sending of events between the command-side and query-side
results in a weak coupling. The resulting freedom and flexibility in designing the
system lead to availability, scalability, and performance among other advantages. The
store used in the command-side is often an event store, because it is natural to store
the events that are produced by the command-side. This proposed data storage model
has a number of benefits that make it especially useful as a store for the command-side
of a CQRS system. First of all, the command-side is only used for accepting changes
and never for queries, and the performance of the store is thus not hampered by
concurring reads and writes. Second, the store contains every change ever accepted
into the system, making it easy to inspect when and by whom a change was done.
A third benefit is the possibility to rebuild the current state (for instance the query-
store) in the system by replaying the events. The replaying of events also enables easy
debugging. The fourth benefit is the possibility to analyze the events for patterns in
usage. This information is impossible to extract from a store that only persists the
last state of the data. In the query-side a diverse range of stores can be used, such
as relational, graph, or NoSql databases. The main goal of this store is to support the
easy and fast retrieval of data, in whatever form the application requires.

The loosely coupled nature of CQRS combined with the benefits of the event sourc-
ing approach makes it a fitting architectural pattern for cloud systems. Event sourcing
itself is not tied exclusively to CQRS; the coupling based on events is similar to that in
more general event-driven architectures, as described by Michelson [170]. The events
in the event store are processed by the system to build the query-side or execute com-
plex processes. The CQRS pattern and its sub-patterns are described in more detail by
Kabbedijk, Jansen & Brinkkemper [133]. Korkmaz [145] studies CQRS from the point
of view of practitioners to gain a better understanding of the benefits and challenges.
Maddodi et al. [157] study a CQRS system in the context of continuous performance
testing.

2.3 Related Work

The work related to this paper is divided into data conversion, specifically schema-less
data conversion, and application deployment.

Data Conversion - Two approaches to data conversion are defined by Jensen et al.
[127]: schema versioning and schema evolution. Schema versioning is accommodated
when a database system allows the accessing of all data, both retrospectively and
prospectively, through user-definable version interfaces. Schema evolution is accom-
modated when a database system facilitates the modification of the database schema
without the loss of existing data. Section 2.5 will show that both schema versioning
and schema evolution are suitable techniques for event store upgrades.

The event store used as a storage for the command-side of the CQRS system is
schema-less and, in that respect, similar to a NoSQL database as described by Scherzinger,
Klettke & Storl [224] and Saur, Dumitras & Hicks [223]. Although the store is schema-
less the data itself does have a schema, but it is implicit (as defined by Fowler [86]):

Section 2.3 — Related Work | 27

the application assumes a certain schema without this schema being actually present
in the store. Within relational stores the standardized DDL can be used to upgrade
the schema and convert the data, a possibility missing in NoSQL stores. Scherzinger,
Klettke & St6rl [224] approach the implicit schema and lack of a DDL for NoSQL by
proposing a new language that can be used to convert the data in a NoSQL store. Al-
though this fills a gap in the standardization of NoSQL stores, without support in the
stores the problem of data conversion in NoSQL stores remains. To aid the evolution
of the data stored, Saur, Dumitras & Hicks [223] describe an extension to one spe-
cific NoSQL database. This extension implements an approach that Sadalage & Fowler
[215] describe as incremental migration: migrating data when it is accessed. While the
research of Saur, Dumitras & Hicks [223] is similar to the research described in this
paper, their solution is tied to a specific technology and is not applicable in systems
that use a similar data model with a different database technology.

Both Cleve et al. [40] and Qiu, Li & Su [201] quantify schema changes occurring in
the evolution of applications. Their work is aimed at relational models, and it is un-
clear how these results translate to event stores. Future studies need to be conducted
before these results can be applied to event stores.

The impact of schema changes on application source code is studied by Meurice,
Nagy & Cleve [168] and Maule, Emmerich & Rosenblum [161]. However, the direction
of the impact differs between schema-less stores and implicit schemas. The change
originates in the application holding the implicit schema and impacts the data in the
schema-less store.

Application Deployment - Blue-green deployment is an upgrade strategy that uti-
lizes two slots to which different versions of an application can be deployed. One of
the slots is active, while the other one is inactive. Upgrading is always done in the
inactive slot, and the user is not hindered while upgrading. This strategy is followed
by different authors. Callaghan [29] describes a tool written by Facebook to perform
online (and zero downtime) upgrades on MySql in four phases: (1) copy the original
database, (2) upgrade the copy to the new schema, (3) replay any changes happened
on the original database during the copy/build phase, and (4) finally switch active
databases. This approach is very similar to the pattern described by Keller [135] who
applied it in the migration of a legacy system. With IMAGO, Dumitras [63] and Du-
mitras & Narasimhan [64] use blue-green deployment for their parallel universe: they
reduce upgrade failures by isolating the IMAGO production system from the upgrade
operations and completing the upgrade as an atomic operation. QuantumDB, a tool
created by Jong & Deursen [130], applies the expand-contract strategy (explained in
Section 2.6) with blue-green deployment.

Hick & Hainaut [108] and Dominguez et al. [60] developed and used MeDEA: a
tool that focuses on the traceability of artifacts. MeDEA makes it possible to translate
changes from a conceptual model of a relational database to schema changes in the ac-
tual database. Curino et al. [46] and Curino, Moon & Zaniolo [47] worked on PRISM
and PRISM++, a database administrator tool that calculates the SQL statements
needed to upgrade a schema. While calculating those statements it can check for
information preservation, backward compatibility, and redundancy. These approaches
solve the problem of analyzing schema changes and generating data conversion state-

28| Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

ments, which is not part of the solution presented in this paper.

The main differences between event store data conversion and the existing research
are the usage of an implicit schema and the amount of data in an event store. Fur-
thermore, this paper does not propose a new tool specific to a certain technology or
database type, but rather proposes strategies that can be applied regardless of spe-
cific technologies. In this paper, the techniques and strategies from existing work are
extracted and applied to event sourcing. This results in an event store upgrade frame-
work that can be used to design and implement an upgrade system.

2.4 Event Store Upgrade Operations

An event store contains different event streams and events. An example is given: the
event store of a WebShop application, shown in Figure 2.2. The two streams contain
many events, but only two events per stream are shown as an example.

WebShop Event Store

Customer Event Stream #1

CustomerCreatedEvent CustomerMovedEvent
CustomerName=J. Doe Address=Highway 15
" > Address=Avenue 10 > . > >

ShoppingCart Event Stream #13

AddedToCartEvent RemovedFromCartEvent
> Article=14325 > > Article=5677 >
" Amount=2 Amount=3

Figure 2.2: An example event store with different stream and event types.

The Figure shows two streams of the store: one for customer #1 and the other
for shopping cart #13. In the application these streams belong to two separate and
independent event sources. These event sources produce these events as the result
of certain actions. For example, adding a product to a cart by a user should result
in the added to cart event. The different event types such as added to cart, removed
from cart, and customer created contain different attributes. The added to cart event
contains the article (an identifier) and the amount (an integer) among others. Event
listeners receive these events and create a view of the data that can be queried. This
knowledge of event types and their properties is the implicit schema that is part of the
application code.

Section 2.4 — Event Store Upgrade Operations | 29

Level Complexity Operation Description
Add attribute An attribute is added to an event.
Basic Delete attribute An attribute is deleted from an event.
Event Update attribute An attribute is updated by changing the name
or value(type).
Merge attributes Two attributes are combined
Complex into a singl i
gle attribute.
Split attribute One attribute is split
into two attributes.
Add event A new event is added to the stream.
Basi Delete event An event is deleted from the stream.
asic
Rename event An event type is renamed.
Stream Merge events Multiple events are combined into one
Complex Split event One event is split into two events.
Move attribute One attribute is moved
from one event type to another.
Add stream A new stream is added to the store.
Basic Delete stream A stream is deleted from the stream.
Rename stream A stream identifier is renamed,
Store or a type is renamed.
Merge streams Multiple streams are combined
Complex into one stream.
Split stream One stream is split into two streams.
Move event An event is moved from one stream to another
stream.

Table 2.1: The Event Store Upgrade Operations, categorized by level and complexity.

An event store has a structure of three levels:

The event store - A collection of streams, and every stream is of a certain type and
uniquely identified by its identifier.

The event stream - Every stream is a collection of events that originated from a
single source and is ordered by the event creation date. In an event sourced system
there should be a single source of all the events in a single stream. The boundary of the
stream is very important: a source has a one-to-one relationship with its stream. This
boundary makes the event sourced systems scalable: every event source is the owner
of a stream and has no relation with other streams. An event source and its event
stream can be moved between machines in a cluster without difficulty. The different
event streams could also be stored in different event stores. This is possible because
the event source is not dependent on other sources.

The events - An event consists of a type and content in the form of key-value pairs.
The type is used to route events to the projectors that are interested in specific types
of events.

30| Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

The event store upgrade operations are used to express how an event store version
1.0 can be transformed into version 2.0. These operations have the same purpose
as the NoSQL schema evolution language proposed by Scherzinger, Klettke & Storl
[224]: they give a common language to express the conversion of an event store. The
complete list of operations is shown in Table 2.1. Two categorizations are applied:
structure level and complexity. The operations on the store level are executed on one
or multiple streams, the stream level operations convert one or more events within
the same stream, and the event level operations convert a single event. The update of
a stream is expressed by the stream level operations while the update of an event is
expressed by one or more event level operations. Every level of operations is also cate-
gorized into basic and complex operations. Basic operations are seen as foundational
operations: they cannot be expressed by other operations. Complex operations can
be built by combining several basic operations, making the categories with complex
operations infinitely large.

The operations presented are agnostic of the business domain of the application
and its functionality. The process of expressing the transformation in these operations
should be done manually, because it should reflect the intent of the upgrade. Schema
changes can be expressed by different sets of operations and these different sets have
their own effects. An example is given: the WebShop application is upgraded to a new
version, and part of the upgrade is a change in storing addresses. Figure 2.2 shows the
old event definition: a single attribute for both street and number. In the new version,
this should be stored in two separate attributes. This data conversion can be done in
multiple ways and two possibilities are given:

1. Every event could be updated with the split attribute operation, and this would
split every address attribute in both a street and number attribute. This increases
the maintainability of the system because all event handling code can assume the
presence of the two new attributes.

2. Every customer stream is updated with an add event operation that represents
the conversion. In this transformation the old information is preserved (to re-
pair mistakes in the split operation for instance). However, now the application
should be able to deal with both old and new addresses, because events can
contain either of the two forms.

Although both options transform the event store differently the two resulting ver-
sions of the WebShop application are functionally equivalent to the users of the system.
However, the inner workings differ significantly. In the first solution knowledge of the
initial address property together with the values is removed. The conversion itself has
changed the event store, and now it appears that the events always contained two
separate attributes. The second solution retains the old addresses and adds the split in
two attributes as an event to this system. This conversion keeps the old events intact
and does not remove information from the store. This example illustrates the need for
requirements defined by stakeholders to guide the data conversion.

Section 2.5 — Event Store Upgrade Techniques | 31

2.5 Event Store Upgrade Techniques

In this section five existing techniques that can convert an event store between two
schemas by means of the event store upgrade operations are discussed.

Multiple versions - In this technique multiple versions of an event type are sup-
ported throughout the application. The event structure is extended with a version
number as suggested by Betts et al. [15]. This version number can be read by all the
event listeners, and they have to contain knowledge of the different versions in order
to support them. In this technique the event store remains intact as old versions are
never transformed. There are no extra write operations needed to convert the store.

Upcasting - Upcasting centralizes the update knowledge in an upcaster: a compo-
nent that transforms an event before offering it to the application. Different than in
the multiple versions technique is that the event listeners are not aware of the different
versions of events. Because the upcaster changes the event the listeners only need
to support the last version. This technique is suggested by both Betts et al. [15] and
AxonlIQ [11].

Lazy transformation - This technique also uses an upcaster to transform every event
before offering it to the application, but the result of the transformation is also stored
in the event store. The transformation is thus applied only once for every event, and on
subsequent reads the transformation is no longer necessary. This technique is similar
to the ones described by Sadalage & Fowler [215], Roddick [209], Tan & Katayama
[242], and Scherzinger, Klettke & Storl [225].

In place transformation - A technique applied by many systems using a relational
database. These systems convert the data by executing SQL statements such as ALTER
TABLE (to alter the schema) and UPDATE (to alter the data). As described by Scherzinger,
Klettke & Storl [225], NoSQL databases do not have such a possibility. In those cases a
batch job is run that reads the data, transforms it, and writes the updated data back to
the database. The documents in the database are updated by this job: adding, delet-
ing, renaming properties, and transforming the values. This technique can be applied
to event stores in the same manner.

Copy and transformation - This technique is similar to the one described by Callaghan
[29] and Dumitras [63]: it copies and transforms every event into a new store. In this
technique the old event store stays intact, and a new store is created instead.

The event store upgrade techniques have their own strengths and weaknesses. To
make this visible the techniques are judged on four quality characteristics from ISO
[118]: functional suitability, maintainability, performance efficiency, and reliability.
The other four characteristics are regarded as not relevant for these upgrade tech-
niques. Compatibility is a requirement for every upgrade system: it should be com-
patible with the overall system. End-users of the system will not interact with the
upgrade system and thus usability is not relevant. The upgrade system is one of the
components in the system, and therefore the security should not be different than in
other components. Finally, portability is not considered a requirement for the upgrade
systems.

Functional suitability - All five techniques can be implemented to achieve func-
tional completeness. However, to execute complex store operations such as merging

32| Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

multiple streams the technique needs to read from multiple streams. When the tech-
nique is a run-time technique such as multiple versions, upcasting, and lagy transfor-
mation this violates the independence of the streams. The streams could be spread
out over different databases and reading them together at the same time in the appli-
cation is unfeasible. Therefore, the techniques multiple versions, upcasting, and lazy
transformation are not functionally complete. The other two techniques are executed
by a separate batch job that does not adhere to the principle of reading a single stream
at a time.

Maintainability - Multiple versions is the least maintainable technique because the
support of multiple versions is spread throughout the application code. The tech-
niques upcasting and lazy transformation have a better maintainability, because the
transformation code can be centralized in those implementations. However, they all
do accumulate conversion code because either the conversion result is not stored, or
there is no way in telling when everything is converted. The implementation of the
lazy transformation technique should apply all conversions that are not yet applied
to specific events when needed. In place transformation and copy and transformation
score the highest on maintainability because in those techniques older transformations
and their code do not have to be kept. After the execution of the data conversion, ev-
ery event is transformed into a new version and thus the conversion code is no longer
necessary.

Performance efficiency - Multiple versions and upcasting are the most efficient, be-
cause they only transform events when they need to be transformed without adding ex-
tra write operations to the store. The transformations are done in-memory as needed,
without writing the events back to the store. The techniques lazy transformation and
in place transformation score a bit worse, because they add the extra write operations
that permanently store the changes. Copy and transformation has the worst perfor-
mance efficiency, because every event is read and copied to a new store, even if there
are no operations affecting the event.

Reliability - Three techniques score high on reliability; either they do not change
the store (multiple versions and upcasting) or make a backup (copy and transforma-
tion). The other two techniques change the event store permanently, making a backup
mandatory.

Table 2.2 shows the overview of the different techniques and their evaluation with
respect to the four quality characteristics. A plus means that the technique satisfies
the quality characteristic, a minus means that the quality characteristic is not satisfied.
A plus-minus expresses an acceptable satisfaction, but there is room for improvement.
These ranks are the result of both literature study and evaluation with the experts as
described in Section 2.8.

Table 2.2 shows a preference for upcasting on the four quality characteristics, but
specific context or requirements could steer companies towards a different technique
such as multiple versions. These requirements could be a short time to market (and
thus not having the time to implement a more maintainable technique such as up-
casting). The event store upgrade operations related to multiple event sources are
considered to be executed by non-run-time techniques only. However, the choice for
a run-time technique when complex store operations are not supported is not compul-

Section 2.6 — Application and Data Upgrade Strategies | 33

Functional Maintainability | Performance | Reliability
suitability efficiency

Multiple versions +/- - +

Upcasting +/- +/- 4

Lazy transformation +/- +/- +/- _

In place transformation + + +/- -

Copy and transformation + + - +

Table 2.2: The event store techniques compared on four quality characteristics. A + means
that a characteristic is satisfied, +/- indicates room for improvement, while — means that the
characteristic is not satisfied.

sory. Systems can implement a non-run-time technique even if they do not plan to
support complex store operations.

2.6 Application and Data Upgrade Strategies

According to Humble & Farley [113] and Jansen, Ballintijn & Brinkkemper [123],
deploying software involves three phases: Prepare and manage, Installing, and Config-
uring. In the first phase, the environment in which an application is deployed should
be prepared and managed: both hardware and software dependencies should be in
place. During the Installing-phase the application itself is deployed. In the final phase
the Configuring-phase is used to configure the application and make it ready for use.

The techniques that are discussed in the previous section are performed in different
phases. Three of the five techniques were already identified as run-time techniques
in the previous section: multiple versions, upcasting, and lazy transformations. They
execute the event store upgrade operations at run-time and are deployed along with
the application binaries, therefore they are part of the Installing-phase.

The last two techniques, in place transformation and copy and transformation, are
not part of the actual application. Both techniques perform the data conversion within
a separate batch job that needs to be run before the new application version is de-
ployed, and therefore belongs to the Configuring-phase. Although the code that per-
forms the technique should be deployed it cannot be part of the application as the
application itself is only deployed in the Installing-phase. These two techniques re-
quire a second deployment strategy aimed at the deployment of the data conversion
logic.

The simplest deployment strategy is to copy the new application onto the machine(s)
replacing the older version. Brewer [23] refers to this approach as a fast reboot. The
time that it takes to bring down the application process, copy the new application, and
start the application process again is the downtime that is observed with this strategy.
Its simplicity is its biggest selling point, but its biggest downside is that this strategy
is not without downtime. Deployment strategies described by Pulkkinen [200] such
as feature flagging, dark launching, and canary release are excluded from the list of
discussed strategies, because they are specifically used to gain more knowledge about
the users and/or (system) performance. Four strategies found in literature, suitable

34| Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

for upgrading an event sourced system, are discussed:

Application upgrade Data upgrade
strategy strategy

Multiple version big flip,
rolling upgrade,
blue-green

Upcasting big flip,
rolling upgrade,
blue-green

Lazy transformation big flip,
rolling upgrade,
blue-green

In place transformation big flip, expand-contract
rolling upgrade,
blue-green

Copy and transformation big flip, expand-contract,
rolling upgrade, blue-green
blue-green

Table 2.3: Combinations of techniques and strategies that result in zero downtime.

Big flip - This strategy, described by Brewer [23], uses request routing to route
traffic to one half of the machines, while the other half is made available for the
upgrade. The traffic is rerouted again when the first half is upgraded after which the
second half can be upgraded. When all machines are upgraded, the load balancer
again can route the traffic to every machine. During the upgrade only half of the
machines can be used to handle the traffic.

Rolling upgrade - This strategy also uses some form of request routing to make
sure that some machines do not receive requests. The machines in this strategy are
upgraded in several upgrade groups defined by Dumitras, Narasimhan & Tilevich [65].
Because a small number of machines is being upgraded at a time, more machines are
available to handle the traffic. However, the machines that are available are running
mixed versions of the application: both those that are not yet upgraded and those
that are already upgraded. This makes rolling upgrades complex, and the application
should be able to handle these types of rolling upgrades.

Blue-green - Blue-green deployment is described by both Humble and Farley [113]
and Fowler [85]. According to Humble [113] this is one of the most powerful tech-
niques for managing releases. Every application is always deployed twice: a current
version and either a previous version or a future version. One of the deployments is
active at a given time, either the green slot or the blue slot. When the application is
upgraded, the inactive slot is used to deploy the new version. Blue-green deployment
can be done without downtime, as no traffic is going to the version that is upgraded.
After the upgrade, the traffic can be rerouted to the upgraded slot, switching between
blue and green. This strategy is similar to the big flip strategy, but reserves extra re-
sources for the upgrade while the big flip strategy uses existing resources and thus
limits the capacity during an upgrade.

Section 2.7 — Event Store Upgrade Framework | 35

Expand-Contract - A strategy described by Sato [222] as consisting of three phases,
also known as parallel change. The first phase is the expand phase: an interface is
created to support both the old and the new version. After that the old version(s)
are (incrementally) updated to the new version in the migrate phase. Finally in the
contract phase, the interface is changed so that it only supports the new phase. This
strategy is suitable for upgrading components that are used by other components. By
first expanding the interface of the component, the dependent components can be
upgraded. When all dependent components use the new interface the old interfaces
can be removed. This strategy is not suitable for application upgrades, however, it can
be utilized in upgrading the database.

An upgrade of an event sourced system needs an application deployment strategy.
This deployment strategy executes the run-time event store upgrade technique, but if
the upgrade uses a non-run-time technique a data upgrade strategy is also required.
The three run-time techniques multiple versions, upcasting, and lazy transformation
only need an application deployment strategy as they do not alter the data store. The
other two techniques, in place transformation and copy and transformation, do need a
data upgrade strategy.

Not all combinations result in an upgrade that does not affect the operation of the
system in a negative manner. Table 2.3 summarizes the combinations that would lead
to a zero downtime upgrade. For the run-time techniques, multiple versions, upcasting,
or lazy transformation, an application upgrade strategy is sufficient, and the big flip,
rolling upgrade, and blue-green deployment strategies will all result in a zero down-
time upgrade. All three strategies upgrade part of the machines while maintaining
operations on the other parts, and the techniques are performed at run-time.

For the non-run-time techniques, in place transformation and copy and transforma-
tion, the same three application upgrade strategies can be used and result in zero
downtime upgrades. However, a data upgrade strategy is also needed to execute the
batch job that converts the data. The strategy blue-green in combination with in place
transformation is not possible, because the in place nature of the technique conflicts
with the strategy that needs to have two slots available. Therefore, the technique in
place transformation only works with the expand-contract strategy. Copy and transfor-
mation, the other non-run-time technique works with both the data upgrade strategies,
blue-green deployment and expand-contract.

2.7 Event Store Upgrade Framework

This section explains how the event store upgrade operation, techniques, and strate-
gies form the event store upgrade framework that can be utilized in two distinct man-
ners. Figure 2.3 shows the different event store upgrade operation, techniques, and
strategies and their combinations.

The first row of Figure 2.3 shows the event store upgrade operations, the darker
yellow identifies the category of operations that crosses event streams and cannot
be executed run-time. The event store upgrade techniques are colored green, the
darker elements identify schema evolution techniques, while the others are schema
versioning techniques. The last two rows identify both application and data upgrade

36| Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

strategies. The arrows between single elements, or groups of elements, identify the
valid combinations. The valid combinations are explained in more detail along with
the utilization of the framework.

Basic & Complex Basic & Complex

Event Stream Basic Store Complex Store

Executed by Executed by

Multiple versions In place Copy and
transformation transformation
Deployed with
Upcasting eployed wi

A\ A 4 A 4

Lazy transformation Expand-Contract Blue-Green
Deployed with Combined with
Big Flip Rolling Upgrade Blue-Green

Figure 2.3: The Event Store Upgrade Framework.

The first utilization of the event store upgrade framework is a decision tree that sup-
ports the upfront design and implementation of an upgrade system for event sourced
systems, presented in Figure 2.4. This tree shows the decisions that form the design
and implementation of an upgrade system.

The design starts with the question if complex store operations need to be sup-
ported. This decision influences the possible techniques that can be applied, because
these complex store operations cannot be executed with run-time techniques. When
support for the complex store operations is not needed the next step is the choice of
event store run-time upgrade technique. Any of the three run-time techniques, multiple
versions, upcasting, or lazy transformation, will be sufficient (shown with a single ar-
row and the || combinator) and Table 2.2 can be used to decide what technique fits the
context. When the upgrade system should support complex store upgrade operations,
the choice is between the non-run-time techniques in place transformation and copy
and transformation. The expand-contract application strategy follows automatically if
in place transformation is chosen as a data upgrade strategy (shown with a single ar-
row and the && combinator). Two different data upgrade strategies can be chosen

Section 2.7 — Event Store Upgrade Framework | 37

Design an upgrade

Is support of
complex store

operations
necessary?

Choose a
non-run-time
technique

Choose a run-time
upgrade technique

In place transformation
&& Expand-contract

Multiple version Copy and

|| Upcasting . transformation
| Lazy transformation

Choose a
data upgrade
strategy

Choose an
application upgrade
strategy

Big flip
|| Rolling upgrade
|| Blue-green

Expand-contract
|| Blue-green

Implement the upgrade

Figure 2.4: Decision Tree for the Design and Implementation of an Event Store Upgrade System.

with the technique copy and transformation as follows from Table 2.3. Although the
utilization of the framework for upfront design has much room for context-specific
choices, it shows what the possibilities are and makes the trade-offs explicit.

The second utilization of the event store upgrade framework is a run-time decision-
making system. This system is implemented in the event store upgrade system, and is
visualized in Figure 2.5. In this system the analysis of the event store upgrade opera-
tions that need to be executed is done at upgrade time. When the operations do not
contain complex store operations, the system can apply the run-time technique in com-
bination with the application upgrade strategy. If there are complex store operations
the system can deploy the non-run-time technique with the data upgrade strategy, and
then apply the application upgrade strategy. In this utilization, the choice for run-time
technique, non-run-time technique, data upgrade strategy, and application upgrade

38| Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

strategy is made upfront. The system implements both a run-time and non-run-time
technique that fits the requirements. The two techniques are completed with an im-
plementation of a data upgrade and an application upgrade strategy. Having these
implementations in the system allows for a fully automated upgrade system based on
Figure 2.5.

Start an upgrade

Are
complex store
operations
present?

Configure the non-run-
time upgrade technique

Configure the run-time
upgrade technique

Execute the
data upgrade

Execute the (_J
application upgrade

Figure 2.5: Decision Tree for an Automated Event Store Upgrade System.

2.8 Evaluation

This work was done in the context of the development of a large CQRS system at
AFAS Software. Two authors are working as architect and developer on this system,
and an earlier list of the event store upgrade operations was discussed with the team
that also works on this system. The operations were implemented in combination
with the copy and transformation technique and the blue-green strategy. Multiple data
conversions were executed with this upgrade system in a smaller experimental setting.
The results of these conversions were promising, but more systematic experimentation
is necessary. Initial results showed that the event store upgrade operations executed
with copy and transformation and deployed with blue-green were able to handle a
diverse range of scenarios. These operations could all be performed while maintaining
the operation of the system, no downtime was observed. However, it also showed that
the time needed to perform the conversion was longer than expected, because the
query store needed to be rebuilt as well.

Section 2.8 — Evaluation | 39

To evaluate the event store upgrade framework, interviews were held with three
Dutch experts in the field of CQRS and event sourcing. They were selected because of
their experience with CQRS and event sourcing, and for their presence in the commu-
nity through speaking engagements. Allard Buijze is the founder and architect of the
Axon CQRS Framework!, and has more than six years of experience with CQRS and
event sourcing both as a developer and consultant. Dennis Doomen is the lead archi-
tect of a large CQRS system. He has six years of experience with CQRS, and four years
with event sourcing. He shares this experience with the community as an international
speaker and often discusses this with other practitioners. Pieter Joost van de Sande is
the founder of NCQRS?, an open-source CQRS framework. He started applying CQRS
and event sourcing more than six years ago, and recently started working on a large
event-driven architecture. All three interviewees received training on CQRS and event
sourcing from Greg Young. Multiple goals were set for conducting the interviews. The
questions asked were directed towards these goals, and the interviews followed this
order.

1. Reveal what their experiences of upgrading CQRS applications are, and what
problems and situations they ran into.

2. Evaluate the utility and completeness of the event store upgrade operations.

3. Evaluate the completeness and the judgment on the quality characteristics of the
event store upgrade techniques.

4. Evaluate the usefulness and completeness of the event store upgrade framework.

The interviews led to small adjustments in the overviews and the event store up-
grade framework, as summarized in the remainder of this section.

Naming Issues - Many small misunderstandings were experienced around naming
event store upgrade operations, techniques, and application and data upgrade strate-
gies. This shows the immaturity of the field, the relatively new concept of event sourc-
ing, and the joining of different fields (domain-driven design, distributed systems,
and event-driven architecture). The event store upgrade technique lazy transforma-
tion was initially named lazy upcasting, but this name caused confusion. It is not the
upcasting that is done lazy, but the transformation of the store that is executed lazily.
The technique copy and transformation was initially named replay of events, which was
confused with the normal procedure that is used to load aggregate roots and rebuild
the projectors by replaying the events in a CQRS system.

Frequency of Operations, and Business Requirements - All interviewees agreed
that the event store upgrade operations across the boundaries of event streams were
not common. One of the interviewees stated “You will not see a lot of complex event
store operations. There is an exponential relation between the level and the times you
encounter an operation.” These operations cause the need for a data upgrade strat-
egy, which is something that two interviewees found conflicting with the expected
immutability of the event store. As a result of this discussion, the support of complex
store operations became the first question in the event store upgrade framework. The
interviewees explained that an event store upgrade system can be useful, even if it

Ihttp://www.axonframework.org/
’https://github.com/pjvds/ncqrs

http://www.axonframework.org/
https://github.com/pjvds/ncqrs

40| Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

does not support these complex store operations, because they see other possibilities
of solving these schema changes. The same holds true for the operations that delete in-
formation from the store, and all interviewees suggested that deprecating or archiving
data is preferred over the actual deletion.

These discussions led to the distinction between functional immutability and techni-
cal immutability. Technical immutability is defined as the most strict form of immutabil-
ity: no changes to stored events are allowed to be made. If this level of immutability
should be preserved the schema evolution techniques (lazy transformation, in place
transformation, and copy and transformation) cannot be applied. However, as one of
the interviewees stated, another level of immutability is functional immutability. Func-
tional immutability allows the transformation of events as long as the information in
the events is preserved from a business perspective. Within functional immutability
there is far more room for techniques that alter the stored events.

Variation in Implementation - Two out of three interviewees described a variation
of the technique multiple versions that improved the code reusability and maintainabil-
ity. By re-using the already existing code to read older versions the maintainability is
improved. These comments show that there is a large design space in implementing
the techniques that removes some of the disadvantages. However, Table 2.2 was not
changed, because the conclusion was that the average quality of the technique was
not changed by these implementation variations.

Projections - An event sourced system always has a data store for querying and
presenting data next to the event store, because the event store itself cannot be utilized
for that purpose. This query store is built from the event data by projectors resulting
in projections. These projections are the data that is shown to users while the event
store is used for the validation of new changes. Two interviewees explained that many
schema changes can be applied by not changing the event schema at all, but by only
changing the projectors and projections. The feasibility of this approach and its up-
and downsides are regarded as out of the scope of this paper, and should be studied
in more detail.

Upfront Design and Prototyping - The interviews show two ways of looking at
event sourced systems. Two out of three interviewees emphasized the importance of
upfront design: by designing the event store, the streams, and the events with enough
upfront thought, upgrades are less often necessary. One interviewee stated “Event
sourcing needs a lot of upfront thought, which is hard to do with agile development.”
This line of thought is also seen in the application of event storming® in the design
of event sourced systems. This design technique is applied to design the events in a
system before implementation, and a good design is said to forestall some of the more
complex event store upgrade operations, such as those on multiple event streams.
The other interviewee stressed the importance of doing event store data upgrades to
prevent the accumulation of conversion code, and thus found less value in defending
technical immutability at all cost.

Completeness and Usefulness - The interviewees found the event store upgrade
framework unanimously useful and complete. Interest in the end result was shown
and encouragement was given to publish this material. One interviewee stated that

3See https://www.infoq.com/news/2016/06/event-storming-ddd.

https://www.infoq.com/news/2016/06/event-storming-ddd

Section 2.9 — Conclusion and Future Work | 41

“You are maybe the only one who has created such an overview and also thought about
edge cases which I hope never to encounter.”

2.9 Conclusion and Future Work

This paper contributes to the research on event sourcing and data conversion in the
following ways. First, event store upgrade operations are presented to explicitly ex-
press the data conversion needed to evolve an event sourced system to a new data
schema. With these operations a common language is proposed for to express schema
evolution for event sourced applications, frameworks, and their upgrade systems. The
operations can also be used to analyze the impact of an event store upgrade: one
category of operations, the complex store operations, cannot be executed at run-time
without violating the independence of the different event streams.

The second contribution is an overview of upgrade techniques and strategies that
are used in event sourcing to execute the event store upgrade operations. This overview
summarizes best practices and literature and makes it accessible to other practitioners.
The last contribution is the event store upgrade framework, which is utilized upfront
to design and implement an upgrade system. The framework makes the trade-offs
explicit, and supports the making of design decisions. The automated utilization can
be used to implement an event store upgrade system that handles every event store
upgrade operation in an efficient way. The framework enables decision-making regard-
ing upgrades downtime and enables the selection of the most performant technique
and strategy. When there are no complex store operations the conversion can be done
at run-time, and techniques that transform events in the event store are not needed.
This leads to upgrades that only need an application upgrade strategy, which can be
applied faster than the upgrades that also need a data upgrade strategy. The main-
tainability problem that run-time techniques have can be solved by executing those
accumulated conversions whenever a data upgrade is performed.

The event store upgrade framework is also usable as a tool to analyze applications
with respect to their level of readiness for the cloud, for continuous delivery, and rapid
software evolution. Applications that do not have a clear upgrade system, but use
ad-hoc data transformation are not ready. Upgrades are done manually and are error-
prone. However, applications that implement an automated upgrade system and can
handle the complete list of event store upgrade operations are ready for continuous
delivery. This allows those applications to incorporate improvements and prevent
errors in doing manual upgrades.

Part of the upgrade framework is implemented in a CQRS system. The copy and
transformation technique together with the blue-green strategy are used in multiple
experiments to transform an event store. This showed that more work is needed to
enable the co-evolution of the stores on the command-side and query-side. The frame-
work was evaluated with three Dutch experts in the field of event sourcing. Although
only three experts were interviewed, and they had different opinions, the event store
upgrade framework was found to be valuable by all three. The relative novelty of
event sourcing can cause problems in understanding concepts and definitions. The
combination of literature study and expert interviews prevents validity problems in

42| Chapter 2 — The Dark Side of Event Sourcing: Managing Data Conversion

definitions and their interpretation and in making sure that the result of this paper is
usable by other practitioners.

To validate the event store upgrade framework the authors plan to implement the
full automated upgrade system that uses the event store upgrade operations to select
an upgrade technique and apply the upgrade strategies. A follow-up study on the
frequency of schema changes in event sourced systems, and the possible operations
should support this implementation. The results of such a study could also help to
uncover business decisions in expressing different schema changes with regard to, for
example, data loss. Finally, the upgrade system could be extended by also including
the query-side of an event sourced system. This paper only focuses on the event store,
but as the interviewees stated, schema changes can be implemented by upgrading
the projection, and not the event store. Furthermore, a change in the event store
also changes these projections and the rebuilding of projections with the additional
performance costs is a problem that also needs more study.

Acknowledgment

Acknowledgment The authors thank the three experts, Allard Buijze, Dennis Doomen,
and Pieter Joost van de Sande, for their valuable experience and willingness to con-
tribute to this study.

3

An Empirical Characterization of Event
Sourced Systems

Event sourced systems are increasing in popularity because they are reliable, flexi-
ble, and scalable. In this article, we point a microscope at a software architecture
pattern that is rapidly gaining popularity in industry, but has not received as
much attention from the scientific community. We do so through constructivist
grounded theory, which proves a suitable qualitative method for extracting archi-
tectural knowledge from practitioners.

Based on the discussion of 19 event sourced systems we explore the rationale for
and the context of the event sourcing pattern. A description of the pattern itself
and its relation to other patterns as discussed with practitioners is given. The de-
scription itself is grounded in the experience of 25 engineers, making it a reliable
source for both new practitioners and scientists. We identify five challenges that
practitioners experience: event system evolution, the steep learning curve, lack of
available technology, rebuilding projections, and data privacy. For the first chal-
lenge of event system evolution, we uncover five tactics and solutions that support
practitioners in their design choices when developing evolving event sourced sys-
tems: versioned events, weak schema, upcasting, in-place transformation, and
copy-and-transform.

This work was originally published in Journal of Systems and Software In Practice, volume
178 (2021), titled ‘An Empirical Characterization of Event Sourced Systems and Their Schema
Evolution - Lessons from Industry’. It was co-authored by Marten Spoor, Slinger Jansen, and
Sjaak Brinkkemper.

44 | Chapter 3 — An Empirical Characterization of Event Sourced Systems

3.1 Introduction

Software systems are increasing in complexity, used in increasingly critical processes,
and serve increasing numbers of end-users. Architectural patterns enable engineers
to build these systems using knowledge acquired by other engineers. Influential
books such as Patterns of Enterprise Application Architecture by Fowler [83] and En-
terprise Integration Patterns by Hohpe & Woolf [111] demonstrate the impact of pat-
tern descriptions on software engineering. Architectural patterns are part of the trend
of knowledge-based architecture design; Li, Liang & Avgeriou [154]. Kassab et al.
[134], Taibi, Lenarduzzi & Pahl [240], and Harrison, Avgeriou & Zdun [103] show
how patterns are instrumental in the capturing of architectural design decisions. In
this article, we describe such a pattern in detail and provide the design decisions
that were employed in practice, with the goal of providing a comprehensive source of
knowledge for practitioners.

Recently, the event sourcing pattern has become a popular answer to the challenges
of complex, mission-critical, scalable systems. Examples of organizations that apply
event sourcing are Netflix [9], and Walmart’s Jet.com [96], both which have as goal
the creating scalable and reliable critical systems. Event sourcing is informally de-
scribed by Fowler [84] as a pattern that “ensures that all changes to application state
are stored as a sequence of events.” Flexibility, debug-ability, and reliability are given
by Avery & Reta [9] as a rationale for using event sourcing. Debski et al. [55] and
Erb & Hauck [71] show how event sourcing can be applied to achieve scalable, reac-
tive systems. Kabbedijk, Jansen & Brinkkemper [133] describe event sourcing as a
subpattern of Command Query Responsibility Segregation (CQRS) in their work on
the improved variability and scalability of systems applying CQRS.

The events in event sourcing, as opposed to general event-driven architectures
(EDAs) [87], are stored as an append-only log of all state changes. Two key character-
istics separate event sourcing from event-driven approaches, such as stream process-
ing, transactional processing, and blockchain. First, events in Event Sourced Systems
(ESSs) are stored as the state of the application. Other approaches use the events to
communicate, while the communication aspect comes second in ESSs. The second
difference is that events are closely related to events occurring in real world business
processes. This allows event sourcing to also be used as a design approach. Domain-
Driven Design (DDD), as described by Evans [74], advocates events as a design tool
for the process flow of a software system. Brandolini [21] proposes event storming
(analogous to brainstorming), a group design process that focuses on the events that
take place in a software system. Further details on these analogous approaches are
found in Section 3.3.

Although event sourcing is related to existing ideas such as EDAs, the pattern itself
has not yet been thoroughly studied. Most knowledge exists in so-called ‘grey litera-
ture’: practitioner blogs, and anecdotal experience reports. In previous work [186],
which focused on the evolution of ESSs, we experienced this lack of literature. This
work fills this gap by deriving an integral description of event sourced systems through
interviews with 25 engineers. Together with this description we identify four cate-
gories of rationale for the application of event sourcing, such as a decrease of com-

Section 3.1 — Introduction | 45

plexity. In this “In Practice” submission, we also identify five engineering challenges
around the pattern, with schema evolution being one of the most complex challenges.
With the pattern description and its liabilities presented in this article, we enable en-
gineers to make a considered choice. Our work is not dissimilar to the work of Musil,
Musil & Biffl [172], who conducted an extensive study on collective intelligence sys-
tem pattern variations, with the goal of enabling architects to predict the outcomes
of different design decisions. Similarly, Slotos [230] describes the Star pattern for
enabling flexible business applications, also with the goal of supporting software ar-
chitecture researchers and practitioners and promoting the pattern itself.

Our study regards a new research area, therefore, we apply Grounded Theory (GT).
Adolph, Hall & Kruchten [2] describe GT as a useful approach for research in areas
that have not previously been studied.

A GT explains how people resolve their main concern by employing a certain pro-
cess. This process is called the ‘core category’ of the GT. The core category of the work
presented in this article is the process of designing and implementing event sourced
systems, as performed by software engineers. The theoretical definition of event sourc-
ing helps both researchers and practitioners to understand, reason about, and teach
the pattern and its consequences. Section 3.2 explains how we applied GT to form a
basis for the conceptualization of ESSs from 25 interviews, and how the three essential
elements are covered. From the gathered data we distill the pattern description and
its consequences. This work has the following contributions:

+ Section 3.3 contrasts ESSs with other existing architectural patterns, such as
EDAs and blockchain, and shows that ESSs are insufficiently described in existing
literature.

+ Section 3.4 describes the rationale for using ESSs: they provide audit function-
ality, are highly flexible and scalable, enable the development of highly complex
systems, and are a current trend. The overview of 19 different ESSs elaborates
on the context of the pattern, showing that event sourcing is applied in different
kinds of systems, from small to extremely large.

+ Section 3.5 provides a thorough description of ESSs based on the findings of the
interviews and presents the pattern itself including its relation to CQRS. It also
reflects on the role of the (implicit) schema present in ESSs.

+ Section 3.6 presents the engineering challenges surrounding the use of the pat-
tern that engineers encounter during the development of ESSs, such as a steep
learning curve, poor ESSs performance, and dealing with privacy regulations
such as the General Data Protection Regulation (GDPR).

+ Section 3.7 focuses on the most prominent challenge encountered in ESSs: schema
evolution. Five empirically established methods are presented that support ESS
evolution. We advise that systems should start out using versioned events and
weak schema, while later evolving to upcasting and even copy-and-transform
techniques.

The validity threats of this work, such as the fact that the interviewees were pragmat-
ically collected, are discussed in Section 3.9. We conclude that ESSs enable complex
scalable systems with auditing capabilities and that our theoretical definition enables
further research and development of these systems.

46| Chapter 3 — An Empirical Characterization of Event Sourced Systems

3.2 Research Approach:
Constructivist Grounded Theory

In our early literature search, we identified that there is little academic material avail-
able when it comes to the topic of event sourcing. Grounded Theory (GT) is defined
as a systematic methodology involving the construction of theories through method-
ical gathering and analysis of data. Adolph, Hall & Kruchten [2] explain how GT is
particularly useful for research in areas that have not been studied before. Our in-
vestigation of ESSs has an exploratory nature, therefore, we use GT to structure our
research approach. Furthermore, we aim to inspire researchers to experiment with
novel approaches in gathering architecture knowledge.

GT is a common research strategy in software engineering research and induces
theory from empirically collected material, such as through interviews or case studies.
For instance, Hoda, Noble & Marshall [110] explore the practices of self-organizing
agile teams using GT. Greiler, Deursen & Storey [99] apply GT to improve the under-
standing of testing practices for plug-in systems. Tamburri & Kazman [241] recover
software architectures by applying GT. Last, Santos et al. [220] study common vulner-
abilities in plug-and-play architectures through GT.

Similarly, we use GT to explore event sourcing, and improve our understanding of
the pattern, the applications, and the challenges. Constructivist GT assumes that nei-
ther data nor theories are discovered, but are constructed by the researchers out of the
interactions with the field and its participants. Data are co-constructed by researchers
and participants, and coloured by the researchers’ perspectives, and values. Within
this approach, a literature review is used in a constructive and data-sensitive way
without forcing it on data. We have employed constructivist GT [33] in our research;
we knew we would find a description of the pattern, but were not aware what other
concepts, challenges, and motivations would be identified.

3.2.1 Research Questions and Motivation

The motivation of our research is formed by five years of experience in the devel-
opment of an event sourced system and by earlier research on schema evolution in
ESSs [186]. This experience guided our research and the direction of our exploration.
Effectively, our previous work is also part of the GT data set, and has been translated
directly into the research protocol. The main goal of the research project was to come
to a cohesive theory around the event sourcing architecture pattern. The research
questions guided the research and were formulated, as per constructivist GT, a priori,
but evolved into the following final set:

RQ1 What types of systems apply event sourcing and why?

RQ2 How can event sourced systems be defined?

RQ3 How can event sourced data structures be evolved?

RQ4 What are the challenges faced by practitioners in applying event sourcing?

Our previous study in the domain [186] gained significant industry interest, which
led us to attend many industry events, where we were often invited as keynote speak-
ers. This provided us extensive access to practitioners in the field, who would offer

Section 3.2 — Research Approach | 47

their support and advice. Through these rich interactions it became obvious that an
extensive interview study could lead to new results and research challenges in the
domain.

Foundations for the Study. While in GT it is recommended that the researchers
do not perform an extensive literature study before the research project, many have
acknowledged that this is almost impossible and at times even impractical [33, 237].
As little academic literature was available, it was easy to fulfill this major GT guideline.
This research project was started after we had already published in this domain [186]
ourselves. We made our previous work part of the initial data set and also included
the works of Fowler [87], e.g., the main concepts were extracted from these works
and subsequently used to create an interview protocol. Throughout the project, as
we gathered new evidence and encountered new concepts, we performed exploratory
literature study projects for each. Furthermore, if the interviewees mentioned an aca-
demic paper, it became part of our literature set. New concepts were extracted from
this literature and integrated with the interview protocol where necessary. The litera-
ture was explored by snowballing forward and backward one level.

3.2.2 Sampling and Interviewees

The interviewed engineers volunteered to contribute to our research after being in-
vited through different channels. Based on our experience in developing ESSs in the
past years we identified the primary locations through which the event sourcing and
DDD community communicates. We invited the engineers through channels such as
Google Groups and Slack. In addition to this open invitation, we explicitly contacted
and invited a number of well-known community members. We executed interview
snowballing, a process similar to snowballing in systematic literature studies [270]:
we explicitly asked each interviewee for further references. The interviewees were not
compensated for their cooperation.

Our direct and indirect invitations resulted in interviews with 25 engineers. The
engineers are event sourcing practitioners in the roles of developers, architects, and
product owners. A number of these engineers were consulting with the company,
while others were employed by the company. The consultants operate as external ad-
visers (in addition to being hired as developer or architect) and are hired by multiple
companies because of their experience. Table 3.1 summarizes the engineers, includ-
ing their role, years of experience with ESSs, and the number of ESSs they worked
on. Combined they have 103 years of experience, with an average of four years per
engineer. For two of the engineers (E14, E16) it is hard to tell how many systems they
worked on over the years, because their consultancy work exposed them to many dif-
ferent systems. A number of the engineers worked on the same system(s), and were in-
terviewed together. We conducted 22 distinct interviews with the 25 engineers. Three
interviews were conducted with two engineers together as these engineers worked on
the same system. In the case of E4 and E5, and E20 and E21 the engineers had a
different role, and their experiences complemented each other during the interview.
Engineers E9 and E10 shared their role, and their answers showed more overlap. The
systems are discussed in Section 3.4. We will refer to the engineers by the number
given to them in Table 3.1.

48| Chapter 3 — An Empirical Characterization of Event Sourced Systems

Role Location Experience (years) | Nr ESSs
E1 | Architect, Developer North America 4 3
E2 Developer Europe 2 1
E3 | Developer North America 2 1
E4 | Architect Europe 2 1
E5 | Developer Europe 2 1
E6 | Architect, Developer Asia 15 3
E7 | Architect, Developer Europe 4 3
E8 | Consulting Developer Europe 2 1
E9 Consulting Developer Europe 3 2
E10 | Consulting Developer Europe 3 2
E11 | Architect, Developer North America 9 3
E12 | Developer Europe 3 1
E13 | Developer Europe 2 1
E14 | Consulting Architect Europe 10 multi
E15 | Developer Europe 1 1
E16 | Consulting Architect, Developer Europe 7 multi
E17 | Architect Europe 2 1
E18 | Architect Europe 2 1
E19 | Architect North America 3 1
E20 | Product Manager Europe 2 1
E21 | Architect Europe 2 1
E22 | Architect Asia 5 1
E23 | Architect Europe 9 1
E24 | Architect Asia 5 3
E25 | Developer Europe 2 1

Table 3.1: Summary of the interviewed engineers. We list roles (all technical except one),
location, years of experience with ESSs and number of ESSs worked on.

3.2.3 Interview Techniques and GT

Each interview took 30-90 minutes, either in person or via video conference. The pro-
tocol presented in Section 3.11 was created using the guidelines of Castillo-Montoya
[31]. During the interviews, we asked open-ended questions exploring event sourced
systems. The questions asked during the interviews were based on a protocol that is
downloadable with the interview transcripts [188].

The protocol was followed freely: the answers given by the engineers guided the
interviews. The four parts of the protocol remained stable during the interviews. Some
of the interview questions were sharpened and added as the interviews progressed, a
technique encouraged by practitioners of GT. The protocol used in the last interview is
presented in Section 3.11. The first part of the interviews focuses on the context of the
event sourced system and the engineer: what are the characteristics of the system, and
why is event sourcing applied. Versioning of event sourced systems is discussed in the
second part of the interviews, based on our experience in this topic we identified this
as an important challenge. The third part deals with the relation of event sourcing

Section 3.2 — Research Approach |49

with CQRS, DDD, and other challenges. Finally, we discuss whatever the engineers
thinks should be discussed in relation to event sourcing.

3.2.4 Coding, Analysis, and Creativity

Each interview transcript was analyzed, as part of the GT approach, through an open
coding process. The interviews were conducted by the first author, the transcripts were
reviewed by another author after creation. The first and second author performed
the codification and categorization, while the third author validated and confirmed
the steps. The authors maintained a shared memo-ing document where ideas and
emerging concepts were noted for discussion with all co-authors. Disagreements in the
codification and categorization were resolved through discussions among the authors
until agreement was found, while older versions of concepts were maintained in the
memo-ing document. The coding process was both organic and methodical.

We provide an example of the coding process. One of the concepts that was dis-
cussed extensively was that of auditing and the ability to have a change log for all
events in the system. E2: it “has saved the finger of blame from pointing at us so many
times ... that bit is worth its weight in gold to me.” E4, translated: “I would save the
old version forever ... for if we end up in court.” Many of the interviewees put equal
emphasis on the role of the audit log. The paragraphs from the transcripts mentioning
the audit log were first coded and linked to the concept audit. From those codes audit
emerged as one of the prevalent rationales behind the pattern. After further grouping
the statements linked to audit we added more detailed codes, particularly addressing
specializations of this rationale such as customer service support and regulations.

This example explains how we started with highlighting important paragraphs and
sentences in the transcripts. Those highlights were coded with short summary sen-
tences. After that the sentences were grouped by linking them to codes: topics de-
scribed by a few words. From those codes we derived concepts, such as the previously
mentioned audit, which was later related to the category rationale. During this process
we iterated until we ended with simplified categories and concepts (also known as the
parsimony principle) that reflected the linked paragraphs. This process was iterative
and organically executed until the first and second authors agreed on the categories
and concepts.

While we cannot claim that saturation was reached, this article is a presentation
of the coherent concepts that emerged from the research. The nature of our study is
exploratory and the research questions are broad on purpose. To reach saturation on
such a large topic one would have to conduct, transcribe, and codify an impractical
number of interviews. Although saturation based on the codes and concepts was not
reached, we are confident that the results we present represent the general sentiment
among practitioners. While we always had the concepts of how to present an archi-
tecture pattern in the back of our minds, we decided to structure the presentation
according to the results of the GT concepts and codes. The guidelines as, for instance,
stated by Gamma et al. [90] on describing a pattern through the elements problem,
solution, and consequences were used during the memo sorting process to match our
concepts, but not as a predefined framework in which our concepts were painstakingly
framed. Section 3.8 discusses the relation between our concepts and the guidelines

50| Chapter 3 — An Empirical Characterization of Event Sourced Systems

of Gamma et al. [90]. The categories, concepts, and codes found during the interviews
are presented in Sections 3.4, 3.5, 3.6, and 3.7. Tables 3.3, 3.2, 3.4, 3.5, 3.6, and 3.7
summarize the results.

The interview protocol, the anonymized transcripts of the interviews, and the classi-
fication codes with links to the interviews are made available as a data package [188].

3.3 Background

The foundational idea of event sourcing is the domain event as described by Evans
[75]. His seminal book on Domain-Driven Design (DDD), however, does not mention
the pattern. Vernon [255] describes event sourcing only briefly in his book on the im-
plementation of various DDD patterns. Young [277], as one of the original proposers
of event sourcing, discusses the challenge of versioning ESSs. Event sourcing is also
discussed in the context of CQRS Young [275], a pattern strongly related to event
sourcing. Recent academic literature [70, 278] shows an interest in applying event
sourcing for research projects.

Three related areas and their differences with respect to ESSs are discussed: transac-
tional processing and database systems, stream processing and EDAs, and blockchain.

Event sourcing is related to database systems techniques used for persistence guar-
antees and replication. Gray & Reuter [97] describe how transaction logs can be used
to replicate the state between database systems. Every state change is recorded as a
transaction, which is similar to event sourcing where every state change is recorded as
an event. Kleppmann [140] discusses event sourcing in the context of data-intensive
applications; he relates the pattern to the change data capture approach, often used
in Extract-Transform-Load (or ETL) processes [253]. ETL solutions are often used for
creating data warehouses. The primary difference between event sourcing and these
techniques is that a transaction or a data change is a technical entity without relation
to the real world, while an event in event sourcing resembles an event in the real
world.

Kleppmann also relates event sourcing to the chronical data model described by Ja-
gadish, Mumick & Silberschatz [120]. Another data model that deals with the tempo-
ral aspects of data is time series, described by Dreyer, Dittrich & Schmidt [62]. Both
techniques are only used as a data modeling technique, while event sourcing is a soft-
ware architecture pattern.

Event sourcing also shares commonalities with stream processing [272], applied in,
for instance, Internet of Things (IoT) systems to process sensor events. Events in [oT
systems are often used to communicate between different (sub)systems and are not
stored as the state of the system. Also, the events represent technical events such as
sensor data as opposed to real-world business domain events. Another closely related
topic is Complex Event Processing (CEP) as described by Luckham [155]. In CEP the
focus is on pattern recognition within a stream of events. CEP itself could be applied
in the processing components within an ESS, similar to the event calculus formalism.
Event calculus, as described by Sadri & Kowalski [216], is a logical language that
represents the effects of events. This language, however, cannot be used to describe
event sourcing as an architectural pattern. Similarly, process mining deals with the

Section 3.4 — Event Sourcing In Practice | 51

analysis of event logs from process-driven systems. The work of Murillas, Aalst & Rei-
jers [171] shows the complexity of mining processes from systems that do not record
historical data. ESSs support process mining by default, which makes them suitable
for enterprise systems.

Anh et al. [7] describe another append-only data structure: blockchain. While the
data structure is similar to event sourcing, the goals of the two techniques are different.
A blockchain focuses on solving problems related to distribution, consensus, and trust,
while event sourcing solves problems with history, temporal complexity, and audit
trails. The blockchain approach enforces the immutability of the data to solve its
problems, while in event sourcing this immutability is self-imposed. Event sourced
systems could be built using a blockchain solution. However, the distribution and
consensus features offered by blockchain do not improve the goals targeted by event
sourcing.

3.4 Event Sourcing In Practice

The 25 interviewed engineers have an accumulated experience of at least 35 event
sourced systems (ESSs). However, a number of those systems were either not yet in
production, or the engineer could not recall enough details of the system. Of the 35
systems, 19 ESSs were discussed in more detail and are summarized in Table 3.2. Still,
the experts’ experience on all of these systems is reflected in the answers that they
gave, and is thus reflected in the challenges, the definitions, and the schema evolu-
tion techniques. The categories in this characterization are based on the interviews,
and were selected based on the categorization of the concepts deduced from the inter-
views.

Event sourcing is applied in enterprise applications, either business-to-business or
business-to-consumer, as illustrated by the interviews. We did not encounter systems
using event sourcing for IoT systems, or other stream processing systems. This reflects
the community from which event sourcing originated, which focuses on enterprise
applications.

The systems overview shows that the event sourcing pattern is not tied to a par-
ticular technology stack. This diversity in technology confirms that event sourcing is
indeed a pattern, and not a technology.

3.4.1 Rationale for ESSs

The reasons for applying event sourcing can be grouped into four categories. Remark-
ably, all systems under study benefit from event sourcing, and no system returned to
a current state model. Still, most engineers state that they would not apply event
sourcing in every system. The reason given for this opinion is the added complexity
of introducing event sourcing. Engineer E2 would apply event sourcing by default, be-
cause of the benefits it gives. The different rationales as discussed with the engineers
are summarized in Table 3.3.

One of the main benefits of applying event sourcing is the retention of all state
changes. According to E24, event sourcing prevents prematurely data deletion: “as a
software developer building a data-driven system and you are modifying data, you are

52| Chapter 3 — An Empirical Characterization of Event Sourced Systems

2
g g £ "
5 5 £ ag2
System Code s Type of application | Technology | Rationale 2% E A = O
platform
MarketingSys E22 | Marketing .NET, audit strict v v 7/
automation DynamoDB
HealthSys E23 | Health record JVM, audit, cut-off v v
management MySQL flexibility moments
WebBuildSys E24 | Website building Scala, audit strict o/
MySQL
B2CSys El B2C communication | JVM, flexibility strict v
MongoDB
EmailSys E2 E-mail template .NET, audit strict v v
management MSSQL
LendingSys E3 Micro-lending Ruby flexibility mutable 7
ObjectSys E4, Object registration JVM, Oracle | audit, strict v v
E5 flexibility
VideoSys E6 Streaming video JVM, flexibility mutable v v/
EventStore,
Neo4J
CMSys E7 Content PHP, complexity | mutable v v
management CouchDB,
PostgreSql
PaymentSys E9, Payment processing | JVM, trending mutable v
E10 Groovy,
MongoDB,
MySQL
ApproveSys E13 | Approval processing | .NET, complexity | mutable v v
RavenDB
MeetSys E15 | Appointment .NET flexibility, mutable v v
management complexity
ProjectSys E17 | Project .NET, audit, cut-off v v
administration RavenDB, flexibility moments
PostgreSql
IdentitySys E20, | Identity PHP, audit, strict v v
E21 | management MariaDB flexibility
P-PaySys E25 | Payment platform Golang, trending, strict v v/
PostgreSql flexibility
DocumentSys E19 | Document .NET, audit, cut-off v v /
automation MongoDB flexibility moments
Advert1Sys E8 Classified JVM, audit, mutable v v
advertising MongoDB flexibility
Advert2Sys E12 | Classified .NET, trending strict v v/
advertising MSSQL
InventorySys E11 | Inventory .NET, LMDB | flexibility, mutable v v 7/
management complexity

Table 3.2: Characterization of the ESSs under study, including the technology platform, the
rationale for event sourcing and the chosen degree of immutability. The application of Domain-
Driven Design (DDD), the Microservice Architecture (MSA) style, and Command Query Respon-
sibility Segregation (CQRS) is also indicated.

Section 3.4 — Event Sourcing In Practice | 53

Concepts Codes

Audit Regulations (E4, E5, E14, E17, E19, E20, E21);

Customer service support (E2, E4, ES5, E7, E8, E9, E10, E12, E17, E18, E22, E23);
Explanation (E14, E23, E24)

Complexity | Decoupling (E2, E11, E13, E16);

Distribution (E1, E3, E6, E12, E13);

Temporal logic (E2, E3, E13, E15, E16, E18, E24);

Process versus data (E4, E5, E7, E8, E9, E10)

Flexibility | Multiple views on data (E3, E6, E7, E8, E14, E15, E17, E19, E20, E21, E23, E25);
Data is not discarded (E11, E24);

Data replication (E1, E4, E5, E6, E24);

Scalability (E2, E4, E5, E11)

Trend Experiment (E2, E12, E14, E25);

Learn (E1, E9, E10, E25)

Table 3.3: The rationales given by the engineers, categorized in four concepts: audit, complexity,
flexibility, and trend.

essentially destroying your older copy of the data. And who told you you’re allowed to
delete data?” We classified this group of rationale with the category audit [1] (9/19
systems). Compliance with regulations (such as system ProjectSys) is one of the rea-
sons in this category. Improving customer support (ProjectSys, Advert1Sys) is another
reason. In those systems the state changes are used to explain the system and its be-
havior to customers. Finally, simply explaining why and by whom data is changed (in
debugging scenarios for instance) is given as a reason too (EmailSys).

The second category is flexibility [149] (12/19 systems). These systems chose event
sourcing (and CQRS), because of the flexibility it provides in the architecture of the
system.

Examples of this flexibility are the creation of secondary indexes for search (VideoSys),
building and refreshing caches (B2CSys), replacing event queues (MarketingSys, Web-
BuildSys, LendingSys), and scaling out to multiple read databases (VideoSys). Sec-
tion 3.5 explains how this flexibility is achieved through the implementation of differ-
ent projections and projectors.

The third category is complexity [17] (4/19 systems). These applications were
considered to contain complex business logic, heavily process driven instead of data
driven. Therefore, the architects designed the system as an event-driven system, start-
ing out with the modeling of processes instead of data.

The final category, which is identified as the rationale for three of the 19 systems,
is trending [39] (3/19 systems). The systems PaymentSys, P-PaySys and Advert2Sys
started with event sourcing, because the (lead) architects picked up on a trend. They
were curious about the details of the pattern, and started to implement it in the new
system. In hindsight, the systems did benefit from this decision, although E9, E10, and
E12 ascribe this to luck, and not to the design practices.

54| Chapter 3 — An Empirical Characterization of Event Sourced Systems

3.4.2 Characteristics of Event Sourced Systems

The core category of the GT process is the process of designing and implementing event
sourced systems, as performed by software engineers. As we needed to make sure that
event sourced systems are not a technology but a technology agnostic pattern, we
wanted to assure the types of applications and the technology platforms used to re-
alize the implemented systems. Three dimensions, the size of the event store, the
workload handled by the application, and the size of the schema, are listed to indicate
what kind of systems benefit from event sourcing. These dimensions assure that event
sourcing is not biased towards systems of a certain size. Three related topics emerged
during the coding process: DDD as a software design approach, CQRS being a related
architecture pattern, and the Microservice Architecture (MSA) style. Together with
the degree of immutability and the type of application, these different aspects form
the characteristics that are listed in Table 3.2.

Event sourcing is a pattern that stores every state change; immutability is thus at the
core of the pattern. Helland [105] states that immutability of data is a crucial aspect
for distributed systems. Although often seen as the defining characteristic of event
sourcing, immutability is not enforced in any manner, as opposed to a blockchain. In
a number of the systems under study, immutability is sacrificed for a simpler schema
evolution technique (see Section 3.7). We observed different degrees of immutability.
The first degree is strict, 8 out of the 19 ESSs never change an event. The second
degree of immutability is used by 3 out of 19 systems, which allow for cut-off mo-
ments. In such a cut-off moment, the event store is changed, but back-ups guarantee
that no information is deleted. The goal of these back-ups is to satisfy regulations or
service-level agreements, therefore, they are kept around forever. This degree of im-
mutability still guarantees an audit trail, because the back-ups can be used to retrieve
all the state changes. The last degree level of immutability is mutable, 8 out of 19
systems allow events to change. In these systems, the event store is changed on some
occasions, and the back-ups are not kept forever. These systems do not satisfy the goal
of a complete audit trail. However, the events can still be used to explain how the
current state was reached. None of the ESSs lose information regarding the current
state of a system. Events that are changed, or transformed, are in most cases changed
because of technical reasons.

In 14 of the 19 ESSs under study DDD is used as the design approach. DDD is
an approach to software development that aims at tackling complexity in the heart of
software (as the subtitle of the seminal book by Evans [74] states). DDD focuses on the
explicit modeling of the domain, including its boundaries and events. However, only
four of the 25 engineers argue that DDD is a prerequisite for event sourcing. Although
the other engineers do not see DDD as a prerequisite, without a doubt DDD inspired
the design of many ESSs. Events, as expressed by E11, “should represent real-world
business events”. This is different from transactional processing, or stream processing.
In those systems events can have a more technical nature. According to E11, en ESS
that contains events not representing real-world business domain events will undergo
more changes to the software. E11 explains: “You align the events with real-world
events, so you are dealing with changes that have a native equivalence. Doing DDD leads
to a less fragile design.” For E16, the understanding of the domain is a prerequisite for

Section 3.4 — Event Sourcing In Practice | 55

doing event sourcing: ‘A high level of maturity of the domain knowledge is a prerequisite.
When the domain knowledge is still evolving, applying event sourcing introduces more
risk.”

CQRS is a closely related pattern that also originated from the community around
the DDD approach (the pattern itself will be explained in more detail in Section 3.5).
Although engineer E14 has seen a few solutions that apply CQRS without event sourc-
ing, they are almost always used together. All of the systems that we discussed with
the engineers applied both CQRS and event sourcing. The interviews give no expla-
nation for this co-appearance. A possible explanation, based on the experience of the
authors, could be the fact that they are often ‘advertised’ together in the community.

Also closely related to event sourcing is the MSA [61] style. Similar to DDD, the MSA
style also attacks the complexity of large software systems. This is confirmed by 8 of
the 19 systems that were discussed in the interviews. They implement microservices
to break up a large application and control complexity by spreading the business logic
over these services. We observed two approaches in the systems that combine MSA
and event sourcing. The first approach uses event sourcing as an implementation
detail of the microservices. In the second approach, the events are not only used to
store state changes, the event store is also used to communicate these events between
microservices.

Unfortunately, the experts could not uniformly report on event store size, traffic, and
schema size of the characterized ESSs. Some of them could not disclose these details
due to commercial reasons, while others no longer had access to the discussed system.
Table 3.4 summarizes the details that were reported per discussed system. The systems
have a size ranging from smaller than three gigabytes, up to 250 gigabytes (or more
than a billion events). Eleven systems (including HealthSys that reports a growth rate
of 4 million events per day) have more than a million events in the store, representing
more than half of the systems. Two systems (WebBuildSys and InventorySys) even
report sizes over a billion events. Advert2Sys shows a small event store size, but that
is due to the active pruning that they do. The growth of 4 million events per day
shows that the total number of events is much higher than the reported five million.
The growth rate of the systems shows that a number of systems report a growth that
passes a million events per day (HealthSys, Advert2Sys, and InventorySys), but most
show a number far less than a million new events per day. The schema sizes show
that none of the reported systems passes the 500 event types, but is rather spread out
between 20 and 450 types. In general, Table 3.4 shows a wide variety of event store
sizes, handled traffic, and event store schema sizes. Systems VideoSys, PaymentSys,
ApproveSys, and InventorySys show that ESSs are not only used for small business
domains. The event store size shows that event sourcing can be used for both small
and large systems.

56| Chapter 3 — An Empirical Characterization of Event Sourced Systems

System Code Event store size Growth of the store Schema size
MarketingSys > 50,000,000 events 10,000 events per day
HealthSys 4,000,000 events per day
WebBuildSys More than 100,000,000 ac- A single event
tive sites, every site owns stream type per site
hundreds or maybe even
thousands of events
B2CSys < 5 gigabyte 50 event types
EmailSys “It is probably approaching | < 50 or 60 events per day
the half a million events mark
by now”
LendingSys “We processed I think half a 6 microservices
million account transactions”
ObjectSys 200,000,000 events 50 event types
VideoSys 7,000,000 events 400 event types
CMSys < 3 gigabyte
PaymentSys 5,000,000 events 300 event types
ApproveSys 1,000,000 events 100,000 events per 2 months 300 event types
MeetSys 100,000 events 1,000 events per day 20 event types
ProjectSys 10 events per minute
IdentitySys 50,000 events 20 - 30 event types
P-PaySys “I don’t think our scale is par- 20 - 30 stream
ticularly high” types
DocumentSys 5,000,000 events 1,000,000 events per month. 100 event types
Advert1Sys 50,000,000 events 60,000 events per day 115 event types.
Advert2Sys 5,000,000 events (active | 1,000,000 events per day 50 event types
event store)
InventorySys 1,100,000,000 (250 giga- | 77,000,000 events per month 450 event types
byte)

Table 3.4: The size and growth of the event store and the schema size of the ESSs under study,
as reported by the experts. Empty cells represent unknown data points.

3.5 Event Stores and Event Sourced Systems

This section defines key concepts and operations in an event sourced system (ESS).
These definitions are based on our experience building ESSs, and confirmed by the
interviews that were conducted. They are used to conceptualize event sourcing and
the identified challenges. When coding the interviews, different characteristics and
variability of the concepts and operations were identified, which are described in this
section. These concepts and operations should be used in discussing, and teaching
ESSs.

3.5.1 The Event Store

We propose the following definitions for the concepts and operations related to an
event store. First the concepts are defined, starting with events and working all the
way up to the store. After that the operations on the event store are given.

Section 3.5 — Event Stores and Event Sourced Systems | 57

Event. An event is a discrete data object specified in domain terms that represents a state
change in an ESS.

An example of an event from the Netflix case [9] that represents a real world busi-
ness event is given in JSON format:

{

"LicenseCreated":

{
"customerId": "BlackMirror",
"titleId": "TheNationalAnthemSO1EO1",
"date": "2014-01-06"

}

The importance of the relation to the business domain is stated by E5: “business
analysts are telling us what the events should be.” E11 adds: “you capture business
changes as a flow of events, you align these events with real-world events.” A more
general definition is given by Michelson [170]: “a notable thing that happens”. It
lacks the relation to the business domain as it is used for event-driven architectures in
general. The data in the events can be stored in different formats such as JSON, XML,
AVRO [245], or Protobuf [95]. Events are stored in a sequence, in event streams.

Both E14 and E25 do see a distinction between internal and external events. Internal
events are fine-grained and contain more detail, while external events are more coarse
grained and meant for other systems to communicate. Through this distinction it is
possible to hide internal business logic from external consumers. Multiple engineers
(E12, E14, E16, E17, and E22) also acknowledge the usefulness of state propagation
through events. Instead of events that mark a business event, events can also be used
to simply propagate the state of an object.

Event Sequence. Every event is stored together with a sequence number. Its sequence
number represents the position of the event in the stream.

Event Stream. An event stream s is a sequence of tuples, each tuple containing an event
and its sequence number

s = ((e17 1)’ (e2a 2)a e (enan»

The sequence numbers are consecutive natural numbers, starting with the number 1.

The sequence numbers are not handed out by the event stream, but are supplied
by the producer of the new events. The event stream does validate if the sequence
numbers are consecutive natural numbers. E3 explains how this is used by event
subscribers: “you get this monotonically increasing sequence of events that you can use
to record your position.” The streams together are stored in the event store.

Event Store. An event store is a set of event streams. These streams form the partitions
of the event store, and are disjoint.

The event store has two foundational operations on event streams: read and append.
The read operation enables systems to read an event stream from a given sequence
number. Events are appended to the event stream with the operation append. E20
explains how append is the only operation that changes the event stream: ‘I only
append new events, and never throw away old events.” The append operation has an

58| Chapter 3 — An Empirical Characterization of Event Sourced Systems

extra validation: the caller should supply the sequence number for the new event,
which is validated and an error is returned if it is not the expected number. Through
this validation the store achieves optimistic concurrency control. According to engineer
E24, this is the strongest guarantee that the event store should offer. A caller will first
need to read from the event stream, before append can be called. If another caller
calls append in between, the append of the first caller will fail, because the highest
sequence number has changed.

Both the read and append operation operate on single streams, this emphasizes
the fact that the streams in an event store are disjoint. The append function can
either append a single event, or multiple events, depending on the implementation.
For instance, Event Store [76] implements the append function with a version that
atomically appends multiple events to the stream.

3.5.2 The Event Sourced System

Enterprise software applications support at least two foundational use cases: storing
information and retrieving information. The event store is used to store the state
changes in the system, however, the event store is not optimized for retrieving infor-
mation.

In ESSs the project function is central in both storing new information and retriev-
ing information. First we define and characterize this project function. Second we dis-
cuss storing and retrieving information by presenting two parameterized operations.
Project function. The project function takes one or more event streams and creates a pro-
jection with the data from the given events. The projection itself can take different forms,
for instance, it can be a relational database that is updated through SQL statements, or
a search index manipulated through the filesystem.

The project function operates on one or more event streams. The event streams are
disjoint, and the project function thus can not assume an order between the events
from the different streams. While the order of events in a single stream is guaranteed,
the events from different streams have no relation.

The projection that is built by the project function in an ESS is similar to the concept
of projections in relational algebra [52]: projections contain a selection of the data
present in events. Projections are similar to views in a relational database: a selection
and transformation of one or more database tables.

Projections. A projection 7 is a selection of the data stored in events, transformed into a
specific model. The selection and transformation depend on the purpose of the projection.
The data in a projection is transient, a projection can be rebuilt from its source events at
any point.

Examples of different variations of projections are frequently given by the engineers.
Engineer E6 for instance explains how they project the event data to both Neo4J (a
graph database) and ElasticSearch (a document database). The graph database serves
the navigation through the data, while the document database serves the search func-
tionality. Other examples given are a specific storage technology for indexing (used,
for instance, by E8, E12, E23), an analysis to report the abuse of accounts information,
and a relational table with all issued licenses for downloaded content.

Section 3.5 — Event Stores and Event Sourced Systems | 59

The primary design question of the project function and its target projection is
its purpose. The importance of the project function lies in its encapsulation of the
variability in storage technology, data selection, and data model. Choices can be made
per project function, which enables a huge potential for optimized projections for their
purpose. The flexibility as a reason for choosing event sourcing (Section 3.6) is in large
part caused by the project function.

The project function also poses a risk to the performance of the system, a challenge
we discussed in Section 3.6. The time it takes to build a projection depends on two
factors: the number of events that are read and the time it takes to update the projec-
tion. Engineers E11, E13, and E14 discuss their search for improved implementations
of projectors. Quick improvements can be found in faster storage technology, or better
use of hardware. Engineer E12 explains how they prune the event stream by moving
older events into a different stream. This pruning decreases the number of events
that the project function needs to process, making the rebuilding faster. Engineer E14
discusses how they plan the rebuilding in weekends, rather than investing developer
effort in optimization.

The retrieval of information from the event store is done by building a projection.
Queries are answered using the data available in the projection. Projectors can build
the projection on-demand, or opportunistically: the given projection is build first and
then the specific query is answered. However, it is also possible to pre-build the projec-
tion: the projector constantly watches the event streams and updates the projection
whenever new events arrive. This decision depends on the ratio between reads of
the projection and new events being appended to the stream. If a projection is read
infrequently, it is unnecessary to constantly project new events, and thus consume re-
sources. However, if a projection is read frequently projecting the new event directly
on arrival improves the performance of the query.

The behavior of the projector is similar to that of the higher-order function fold [115],
a recursion operator that works on lists, as stated by Meif3ner et al. [164]. The pro-
jector folds over the specific event streams and creates a projection. The integration
of functional programming and domain-driven design is further explored by Wlaschin
[268].

Storing new information is done using the append operation. The append operation
is the only operation that is capable of storing new events in the store. However, before
storing these new events, they have to be produced. Events in an ESS are produced
as a result of an action (the commonly used name is command) that is accepted by
the system. The validation, resulting in an acceptance or rejection of the command is
done by the accept function.

Accept function. The accept function takes a projection = and a command c. The com-
mand is validated using the data in the projection, and the accept function either results
in an error or in an event.

The command follows the Command pattern described by Gamma et al. [90]. The
system first builds a projection, and then validates the command using the accept
function. Validation of the command can result in either a new event or an error (in
case of a validation error). The new event is appended to a specific event stream,
which is selected based on properties present in the command. This appended event

60| Chapter 3 — An Empirical Characterization of Event Sourced Systems

is the new information stored in the system. While the projection is built in order to
validate the command, it is only used to validate the command and is volatile.

A command can only affect a single stream, because the append operation appends
to a single stream. To guarantee the consistency of information, the system should
not append events to two streams in one request. One append might fail, leaving the
system in an inconsistent state. This rule increases the importance of the design of the
schema of an event store.

3.5.3 The Schema

An event store contains no schema for the specific structure of events. The data schema
is not explicitly defined at all, but is implicitly encoded in the ESS. The knowledge of
the data schema inside an ESS is encoded in the source code of the accept and project
functions. This is similar to other systems with a so-called implicit schema [86], such
as document-oriented data storage systems.

In general, events can take any form and thus the schema as well, therefore, we
left these definitions abstract on purpose. However, we believe that these abstract
definitions can be used to support the discussion of schema evolution, as we show in
Section 3.7. This section defines event, event stream, and event store schemas, along
with the conforms relation.

Event Schema. An event schema e describes the type and form of events. conforms(e,¢)
holds if event e conforms to the specification e.

An event schema could be implemented by, for instance, XML Schemas or AVRO [245].
The latter uses the schema not only for validation, but also for serialization to a binary
format. Two other options that can be applied to create a more formal event schema
are domain-specific languages (suggested by E11 and E14) and strongly typed classes
(see Table 3.5).

Event Stream Schema. An event stream schema < describes an event stream and the
events that can occur in the stream. The event stream schema contains the event schemas

of the events that can occur in the stream, along with the patterns of occurrence. conforms(s,s)
holds if event stream s conforms to the specification .

An event stream schema contains both the specification of the events, and the spe-
cific patterns. An example schema contains both the schema (or specification) of the
‘registered’ event, and the fact that the ‘registered’ event occurs before a ‘checkout’
event.

Event Store Schema. An event store schema 6 describes an event store and the streams
that are stored in the event store. conforms(es,f) holds if event store es conforms to the
specification 6.

The event store schema contains more knowledge than only the event stream schemas,
similar to the event stream schema. For instance, the cohesion between streams can
also be specified in the event store schema. An example of this is that when a spe-
cific stream contains a certain event, another stream should exist and be present in
the event schema. An explicit implementation of event stream schemas or event store
schemas was not encountered during the interviews.

Section 3.5 — Event Stores and Event Sourced Systems | 61

3.5.4 Event Sourced Systems based on CQRS

As we have seen in Section 3.4, every ESS under study also applies CQRS. CQRS was
introduced by Young [275] and Dahan [50], and the goal of this pattern is to separate
actions that change data (commands) from requests that ask for data (queries). Al-
though event sourcing and CQRS can be used separately, the common application of
the two patterns is worth exploring. Based on literature and the interviews an exam-
ple architecture combining event sourcing with CQRS is discussed. This architecture
is shown in Figure 3.1. As illustrated, the event store schema 6 is part of the ESS:
the event store conforms to it, and the command and query system encode it in their
application logic.

In the command system aggregates (as introduced by Evans [74]) are used to pro-
cess incoming commands (1). Commands are routed by the commandhandler to the
correct aggregate. Aggregates will process the commands using the accept and append
operations. First the existing events are read (2), a projection is built (3), and then
the accept function is called. When the command is accepted, the resulting event will
be appended to the event stream (4).

An aggregate reads a specific event stream, to which the new event is also appended.
Often the aggregate will be the owner of the event stream it reads and appends to. As a
benefit, commands sent to different aggregates can be processed concurrently without
interfering. E6 describes a solution where multiple aggregates use the same stream.
This variation is used to share generic behaviour among aggregates; it is mixed with
more specific logic.

In the query system, projectors are used to build projections that can be used to re-
turn information to the sender. Queries are routed by the queryhandler to the correct
projector (5), depending on the specific purpose of the projector (such as browsing or
searching). The projector will retrieve the requested information from its projection.
First the events from the event streams will be read (6), then the projection will be
built (7).

While queries can be handled by building the projection on-demand, most ESSs
based on CQRS will update the projection as soon as new events are appended. In
that scenario, step (6) and (7) will be executed before (5), and the projector can
immediately use the projection to handle the query. This decision is based on the
ratio between events and queries. When there are few queries, and many events, pre-
building the projection takes up resources (such as storage). If the workload consists
of more queries, building the projection ahead of time results in faster response times.
E24 describes a flexible approach that merges the two approaches in an on-demand
fashion. The sequence numbers of events are used as checkpoints and allow the pro-
jectors to track which events are already processed. The immutability of the event
store is crucial for these projectors. If events or their ordering are mutated, the check-
point has no value and the projector needs to re-read the event streams and rebuilt
the projection.

Most pre-built projectors are eventually consistent. As Vogels [261] explains, the ESS
guarantees that if no new commands are processed, eventually all queries will return
the last updated value. However, because there is time between the acceptance of a
command and the updating of a projection, a query might return an older value. The

Chapter 3 — An Empirical Characterization of Event Sourced Systems

62|

‘solranb o1 puodsai 01 pasn a1e YoIYM
‘suonoafoid a3 prng o031 waisAs A1anb o1 Aq peal a1e S1USAS SWES ISIY], "SJUSAS 93 JUISN SPUBUIWOD SIIBPI[BA WSISAS PUBUIWIOD Y], "SWIISAS
A13nb pue puewwod 31 £q PIPOIUL ST YDIYM ‘g BUIDYDS I 01 SULIOJUOD 3I01S JUIAS 3], 'SYOD U0 paseq WISAS PIDINOS JU2Ad UY :T°¢ 3In3ig

rm T TS
B ——— o ———o 1 U2/ 1 uolafoid uauodwo:
ewayos| v - weme q 1 3 S
uoipe uole|al S = - pusba
peas (9)

[T el L
' m CT(e T
1 VT

' "z Ty AT I
" " p o)) CleTTe)
! _ CTU Ty €T
' ' | S Sdhsicd ' (1)

e . S A T SR

m " SWI0JU0D CIITTTT B _«,..-----I.,u

1
H ' Cs weans Juang Ts weans juang
1
' H A A A
1 Ty 1
. [S A 21035 JUaA]
' > . : '

1 1
: A S e N S SR B _ I IS

h)

i pafoid (£) ' m ' puadde () ;
1 . !
" | mmmnogw" ' ' . . peos (2) m
! z I ' ' 3 ' ! u u .
! 10303[04d 10309(0.4d " ' , ' — — !
1 ! 1
1 ! 1 ' !
" A A H . +|4_ . yafoud (g) 1 :

' ! 91e62.466 : 91eba.166 '
" ; : 53podua; Y Y ;
i ' ' podu3, '
' ' ' s o ' 7} 7} i

1 1
1 ' 1 1 1 '
1 A 1 ! 1 '
1 ! 1
! WaIsAS : . ' _ WaisAs
' AsanD | . B BWSYDS 21035 JUIAT ! ' puewwo)
llllllllllllllll 1 | e e e e e e e e e e e e e ————- e e - —————————— - S ——

Js|pueHAIaNd J3|pueHpuewwo)

ﬁ\»_mzcﬁmv ﬂ puewwod (1)

Section 3.6 — Challenges Faced in Applying Event Sourcing | 63

Concepts Codes

Event Store Business events (E5, E11);

State propagation (E12, E14, E16, E17, E22);
Monotonically increasing sequence number (E3);
Append only (E1, E2, E16, E17, E20);

Optimistic concurrency control (E24);

Internal versus external (E14, E25)

Event Sourced System | Projector variations (E6, E8, E12, E23);
Optimization of projecting (E11, E12, E13, E14)

Schema Domain Specific Languages (E11, E14);
Strongly typed classes (E2, E3, E4, E5, E17)
CQRS: Projections Synchronous (E2, E20, E21, E23);

Opportunistic (E24);
Independent (E16, E17)

CQRS: Aggregates Multiple on one stream (E6);
Snapshots (E2, E20, E21);
Instance versus type (E14, E25)

Table 3.5: The concepts and codes extracted from the interviews related to the implementation
of CQRS based ESSs.

duration between (4) and (7) is the so-called inconsistency window: the command
system and the query system do not share a consistent state. Eventual consistency was
also listed as one of the challenges in ESSs and is discussed in Section 3.6.

Four engineers explain how their projectors share a database transaction with the
aggregates. This allows them to achieve immediate consistency, because both the
event as the projections are committed in a single projection. In those systems scala-
bility is sacrificed for immediate consistency. This implementation technique results in
synchronous projections.

Table 3.5 summarizes the different concepts and codes that were extracted from the
interviews. While the definitions are mainly based on our experience in building an
ESS, we have used the data extracted from the interviews to scope our description.
The concepts and codes discussed by the engineers determined what specifics were
described.

3.6 Challenges Faced in Applying Event Sourcing

A pattern description without discussing the consequences is incomplete, and would
lead engineers astray. While Section 3.4 discusses the positive consequences that engi-
neers experienced, they also discussed the negatives in the interviews. In this Section
we discuss five challenges experienced by the engineers with two goals in mind: (1)
to indicate to practitioners what the limitations of the pattern are and (2) to formulate
novel research topics for future research around the pattern. The first two challenges
are addressed in more detail by two of our contributions in Section 3.5 and 3.7. The
summary of mentioned challenges by engineers is listed in Table 3.6.

64 |

Challenge

Chapter 3 — An Empirical Characterization of Event Sourced Systems

Codes

How can Engineers better be Sup-

ported in Learning how to Apply the
Event Sourcing Pattern?

How can Tools, Frameworks, and
Platforms be Provided to Make the

Eventual Consistency (E1, E2, E14, E24);

Events versus state (E1, E2, E4, E5, E6, E12, E13, E15, E16,
E17, E20, E21, E23, E25);

Lack of knowledge sharing (E1, E3, E9, E10);

Start is slow (E4, E5)

Immature tools (E2, E9, E10, E17, E20, E21, E25);
Frameworks not properly maintained (E6, E19, E22);

Pattern even More Successful? Pattern versus framework (E6, E24);
Tools not accepted by operations (E14);
Frameworks hide details from developers (E24);

Frameworks help beginners (E6, E7, E13, E14, E17, E24)

Rebuilding is slow (E4, E5, E8, E9, E10, E13, E20, E21, E22,
E25);

First in-memory (E8, E24);

Targeted rebuilds (E8, E9, E10, E16, E17, E20, E21, E23);
Rebuild versus developer time (E1, E2, E6, E7, E9, E10, E11,
E13, E14, E15, E20, E21, E22)

Separate events from personal information (E20, E21);
Remove (E11, E23);
Anonymization (E11, E25)

See Table 3.7

How can Projections be Optimized?

How can a System that Uses Event
Sourcing Protect User Privacy?

How can Event Stores be Evolved?

Table 3.6: The challenges faced by the practitioners while implementing ESSs.

How Can Engineers Better Be Supported in Learning How To Apply the Event
Sourcing Pattern?

The most prominent category of challenges mentioned by the engineers is in the area
of designing software. Designing ESSs is more difficult than other systems, because
of two characteristics. In the experience of 13 of the 25 engineers, thinking in events
and state transfers is completely different from thinking in current state and database
transactions. Section 3.5 proposes a description that improves the understanding, and
supports the teaching of event sourcing and event sourced systems (ESSs).

An ESS introduces not only events and state transfers. Eventual consistency forces
developers to let go of guarantees that they would have in a system using current state
and synchronous processing. In a CQRS system, an update sent through a command
will not immediately be reflected in the result of a query. The system first needs to
process the event into one or more projections. Engineer E12 states that “a lot of
developers had to get used to information not being in place”, and E2 adds that “getting
people to understand eventual consistency is the biggest hurdle.” Eventual consistency
forces developers to rethink the basic interactions of the user with the system.

We give two examples of interactions that force developers to rethink system design.
The first example is that of the expectation of users to retrieve data that they previously
submitted into the system. In a CQRS system, the query system might not directly
return the data that was submitted through a command. The user interface of the
system should make it clear to the user what is going on, or even try to hide the fact
that the system is eventually consistent. The second example is that of developers that
more or less have the same expectation. Often developers try to use the result of the

Section 3.6 — Challenges Faced in Applying Event Sourcing | 65

query to make decisions in an aggregate. However, the query system might not have
processed all events and missed recent updates. If developers overlook this principle,
the decisions lead to bugs in the system.

How Can Event Stores Be Evolved?

Both E13, “we dreaded the upgrading, we had some fear in advance”, and E22, “ver-
sioning in event sourced systems is a big problem”, point out the perceived difficulty of
upgrading ESSs. This challenge did not come as a surprise, our earlier work [186] and
the work of Young [277] underline this. During the interviews we identified five fun-
damental techniques for schema evolution in ESSs, which are described in Section 3.7.

How Can Tools, Frameworks, and Platforms Be Provided To Make the Pattern
Even More Successful?

Eight engineers discuss the lack of standardized tools, such as frameworks, platforms,
and databases. A commonly stated opinion within the community is that you do not
need frameworks to implement an ESS. However, engineers E9, E10, E17, E20, E21
and E25 state that they wish to see more mature libraries and frameworks. Engineers
E6, E17, E19, and E22 mention that infrastructure and tooling for ESSs is immature.
Either the tooling does not support a broad enough set of scenarios, or the quality
is lacking. How large the market is for specialized event sourcing tools is difficult to
say. Recently AxonlIQ [10] has started to offer commercial support for ESSs, similar to
what Event Store [76] does.

How Can Projections Be Optimized?

Projections, as discussed in Section 3.5, are used to retrieve information from the
system. Rebuilding projections, however, can become a bottleneck for ESSs.

Engineers E11, E13, and E14 discuss their search for improved implementations
of projectors. Quick improvements can often be found in faster database technology,
or better use of hardware. Although rebuilding projections needs planning, engineer
E14 discusses how they rather plan the rebuilding in weekends, instead of investing
developer effort for optimization.

Engineer E16 explains how the domain can show an optimization: not reading all
the events on a rebuild. Often the older events are no longer reflected in the projection,
because the specific data (such as a classified advertisement) is no longer active.

Another important implementation detail that lifts some of the burden is that pro-
jectors can (and must) be implemented as independent, autonomous processes. This
gives the system the possibility to only rebuild those projections that need to be rebuilt,
instead of all the projections at once.

How Can a System That Uses Event Sourcing Protect User Privacy?

Privacy regulations, such as the GDPR, are designed to protect users from being taken
advantage of. Personal information should not be kept in a system for all eternity,
but the system should delete it whenever someone requests that. However, such a
requirement conflicts with the nature of event sourcing: retaining all the data. Engi-
neers E20, E21, E23, E25 mention that they designed their systems to comply with
these regulations. Systems HealthSys and P-PaySys use some form of anonymization
and removal of information to comply. Obviously, this requires them to rewrite events.

66| Chapter 3 — An Empirical Characterization of Event Sourced Systems

System IdentitySys takes a completely different approach. The system separates the
events and the personal information in two different stores. When events are read,
they are supplemented with personal information. If that information is no longer
present (because of removal requests), default values are supplied.

3.7 Schema Evolution in Event Sourced Systems

A challenge discussed by multiple engineers is the evolution of event sourced systems
(ESSs) (as stated in Section 3.6). From the transcripts, we identified five fundamental
techniques for schema evolution. These event schema evolution (ESE) techniques are
described using the definitions given in Section 3.5.

We encountered two reasons why event schema evolution in ESSs is difficult. First of
all, the implicit schema (as described by Fowler [86]) makes evolution in ESSs difficult.
Solutions as proposed by Meurice, Nagy & Cleve [168] and Maule, Emmerich & Rosen-
blum [161] to analyze the impact of schema changes are not usable, because there is
no explicit schema. In contrast to their solution, the change originates in the applica-
tion and impacts the data in the event store. This makes the direction of the impact
different from theirs.

The second difficulty in event schema evolution is the immutability of the event
store. Traditional solutions to transform or rewrite the store are not always possible.
However, the benefits of immutability in event stores (as listed in Section 3.4) are not
always requirements. The different degrees of immutability, as shown in Table 3.2,
allows for different evolution techniques.

Teams that apply event sourcing without a clear understanding of the business do-
main introduce risk, according to E14, E16, and E22. E22 explains that the challenge
of evolution is exactly why it is preferred to start a new system without event sourc-
ing, and only introduce event sourcing when the domain knowledge is stable: “once
we have enough trust in our model we will transform to event sourcing.” As E16 con-
firms, events based on a sufficiently clear domain knowledge will decrease schema
evolution.

Another prevention technique is the cleaning up of events in the event store, of
which we encountered two possibilities. First of all, older events that no longer repre-
sent active information can be moved into cold storage. These events can still be read
and processed, but are no longer processed by the ESS itself. Therefore, they do not
have to conform to the implicit schema of the ESS. Second, sometimes these events
can be kept in the event store itself, but the ESS will never read them. Again, this
makes it possible to ignore those events on upgrades.

Event schema evolution that cannot be prevented can be solved by the following
five evolution techniques. Although in our work [186] we also discuss five techniques,
during the interviews a different set of techniques was encountered. The technique
lazy transformations was not mentioned by any of the engineers, while weak schema
was mentioned as a new technique. Which techniques are used by which engineers,
and the benefits and liabilities per technique given by the engineers during the inter-
views are classified in Table 3.7. In some cases the liabilities are also from engineers
that do not apply the particular technique: they stated the liability as a reason for not

Section 3.7 — Schema Evolution in Event Sourced Systems

| 67

Technique Engineers Benefits Liabilities
Versioned 2: E7,E19 Simplicity of implementation | Application logic pollution (E7,
Events (E19) E9, E16)
Weak Schema 11: E2, E7, | Simplicity of implementation | Application logic pollution (E9)
ES, E11, | (E2, E8, E11, E15, E17, E22) Feature incomplete (E8, EI5,
E14, EI15, E17)
El6, E17,
E20, E21,
E22
Upcasters 12: El, E4, | No application logic pollution | Decrease of run time perfor-
E5, E7, E11, | (E19) mance (E11, E23)
E12, EI13, | Strict immutability (E24) Multiple schemas (E23)
El4, E16, | Simplicity of implementation | Complexity of implementation
E19, E23, | (E14) (E23)
E24
In-Place 5: E8, E9, | Ad-hoc evolution (E8, E9, E10, | Mutability of events (E22)
Transformation | E10, E13, | E13, E23) Complexity of implementation
E23 Single schema (E13) (E13)
Decrease of evolution perfor-
mance (E24)
Risk of data-loss (E8)
Copy- 14: E3, E6, | Simplicity of implementation | Mutability of events (E11, E16,
Transform E7, E8, E9, | (E6, E13) E22)
E10, EI11, | Strict immutability (E15, E17, | Decrease of evolution perfor-
E13, E14, | E19) mance (E6, E24)
E15, E17, | Ad-hoc evolution (E3, E6, E17,
E19, E22, | E23)
E23

Table 3.7: Benefits and liabilities of event sourcing evolution techniques.

using the technique.

ESE Technique 1: Versioned Events

Given an event store es conforming to a schema 6, the technique versioned events
transforms the schema into 6’ such that

conforms(es,0') AVsef:3" e :ccd’

This technique introduces only new types of events, and does it in such a way that
the event store es conforms to §’ without transformation. The project functions that
process the involved streams are required to handle these new events.

FINDINGS This technique is applied by engineers E7 and E19, with the sole benefit
that it is a simple technique that does not require specific changes to the ESS. The
liability of this technique is the pollution of application logic, as stated by E16: ‘T try
to keep my domain abstraction pure. My v1 and v2 version of the event do not enter the
model together.”

ESE Technique 2: Weak Schema

With this technique the events are described in a minimalistic manner. Similar to
technique 1, the event store es or the schema 6 are not transformed during evolution.

68| Chapter 3 — An Empirical Characterization of Event Sourced Systems

Evolution operations that are allowed with this technique are limited to transforming
the event e into ¢’ such that it still conforms to the event schema e. This requires the
project operation to handle this variability.

RELATED WORK This technique is described by Daigneau [51] as the tolerant reader
pattern. Serialization formats such as Protobuf by Google Inc. [95] and AVRO by The
Apache Software Foundation [245] support this technique by reading the existing bi-
nary data into the new version of the objects.

FINDINGS Eleven engineers apply this technique, because of the simplicity. The lim-
itations of this technique are stated as a liability, together with the pollution of the
project operation that is required (E9 explains: “you want to assume a certain event
schema”).

ESE Technique 3: Upcasting

This technique is well known to event sourcing practitioners and described by Betts
et al. [15]. The event streams are transformed into streams conforming to the latest
schema by a new function: the wupcast function. This function is called before the
streams are passed into existing project functions. The transformation is centralized
in this new function, which improves the maintainability of the system.

For the project functions it appears that little has changed, it appears that the re-
lation conforms(es, 0') holds. However, events already stored in es still conform to 6,
while newly appended events conform to 6. After appending new events to es, the
store itself will neither conform to 6 or 6.

RELATED WORK The technique is similar the pattern message translators as described
by Hohpe & Woolf [111].

FINDINGS Twelve engineers use upcasters, claiming benefits such as no domain pol-
lution, the immutability of events, and simplicity of implementation. One of the stated
liabilities is a decrease in performance: “If you have been running upcasters for a long
time, you will have quite a stack of them in place, which slows down the entire loading.”
Other liabilities are added complexity in analyzing the event store, because it contains
events that conform to different schemas.

ESE Technique 4: In-Place Transformation

This technique updates events to resemble the new schema, and thus forces ESSs to
forgo immutability. New operations that alter event streams need to be introduced,
such as insert (insert an event at a specific position) and update (update the event at
a specific position). These operations break the immutability of the event store, with
the consequence that cached projection need to be rebuilt. Therefore, two available
event stores, EventStore Event Store [76] and AxonDB AxonlQ [10], deliberately do
not offer these operations.

RELATED WORK This technique is similar to migration scripts for relational databases.
Scherzinger, Klettke & Storl [224] and Saur, Dumitras & Hicks [223] both propose a
similar approach to evolve data in a NoSQL store. The lazy migration (on data access)
is similar to incremental migration as described by Sadalage & Fowler [215].

FINDINGS Four systems, HealthSys, PaymentSys, ApproveSys, and Advert1Sys, apply
this technique. Benefits are the possibility of ad-hoc fixes, and improved reasoning
because the store will only contain events conforming to a single schema. However,

Section 3.7 — Schema Evolution in Event Sourced Systems | 69

the risk of making errors, the loss of immutability, and the performance are stated as
liabilities. E22 explicitly prevented this technique from being used: “to prevent this
technique we first zipped the events, and then encoded the result before storing them.”

ESE Technique 5: Copy-And-Transform

During the execution of this technique, existing streams are processed and new streams
are created from transformed events that conform to the new schema. This does not
violate the immutability of the source events, but creates new events instead. Existing
projections are still valid, although they do need to process new streams to receive
new events.

RELATED WORK Young [277] describes this technique as copy and replace. The paral-
lel universe of IMAGO, as described by Dumitras & Narasimhan [64], is similar to this
technique. QuantumDB, created by Jong & Deursen [130], uses ghost tables to apply
this technique in relational databases. Copy-and-transform of a complete event store
could be seen as an ETL process that creates a new store.

FINDINGS Fourteen engineers have used this technique, either to transform specific
streams or a complete event store. As E6 states, this technique is relatively simple to
implement, because “we can do literally anything we want.” The data preservation is
stated as a benefit, as well as the fact that this is a one-time operation. The perfor-
mance of this operation is a liability, transforming a large store takes a considerable
amount of time.

The data discussed in Table 3.7 does not allow us to discuss how techniques are
combined within a single system. It does allow us to discuss how engineers have
experienced and applied different techniques over the course of working on multiple
systems. We can observe the following from the discussed engineering experiences:

+ No engineer has solely applied versioned events or in-place transformation, those
techniques are clearly used in combination with others.

+ Five engineers have solely applied upcasters, which corresponds with the general
advice we found in the grey literature and community.

+ The copy-transform technique is mostly used in combination with other tech-
niques, only two out of the fourteen engineers have solely applied this technique.

+ Four engineers have considered techniques, but opted not to apply them: E9
considered versioned events and weak schema, E16 considered versioned events
and copy-transform, E22 considered in-place transformation, and E24 considered
copy-transform and in-place transformation.

We conclude that the techniques are not exclusive: almost all engineers have used
multiple techniques and applied multiple techniques in a single system. Example com-
binations mentioned in the interviews are

+ The application of upcasters, with copy-transform to clean up the upcasters when
there are too many.

+ The application of in-place transformation for quick patches, while a different
technique is used for planned evolution.

+ The application of weak schema for simple evolution steps, while a different
technique is used for more complex evolution.

70| Chapter 3 — An Empirical Characterization of Event Sourced Systems

From the study we formulate the following advice:

1. Versioned events and weak schema are the simplest techniques to implement. Sys-
tems should start out with those techniques.

2. When evolution operations cannot be handled by the first two techniques, sys-
tems can apply upcasting. This retains the immutability of the event store.

3. Only when a decrease of performance or maintainability is experienced should
systems apply copy-and-transform.

4. In-place transformation should only be used by those systems that do not require
immutability or an audit log.
The techniques form a range of possibilities to evolve the event store of an ESS. All
techniques, with one exception in-place transformation, can be applied in an ESS that
follows the definition given in Section 3.5.

3.8 Discussion

One could wonder whether another research approach would have been equally suc-
cessful in extracting architecture knowledge about the event sourcing pattern. We
have looked at open-source systems such as AxonlIQ [11], Event Store [76], NEventStore
Dev team [174], Prooph Components [199], and observed that these follow the pat-
tern and guidelines as discussed in this article. However, aspects such as the rationale
and consequences of using the pattern are impossible to extract this way. This research
is also similar to a study with multiple cases (Flyvbjerg [81]), although one would ex-
pect a more extensive extraction of information about the case (i.e., system) and its
context in a multiple case study. We would have had to use more research resources,
but perhaps we would have also been able to provide more code examples of how the
pattern was implemented. Finally, design research (Sein et al. [229]) could have also
been used to extract the pattern description. While the description would perhaps
have been less extensive, there would have been more focus on the evaluation and
validation of the pattern and its description. We consider this last aspect as future
work, even though we are convinced that the incremental nature of this research has
led to a pattern description that is reusable and useful for architects.

Our pattern description itself does not follow a specific format. We decided to struc-
ture our presentation according to the concepts that emerged from the GT, and not
according to a specific pattern description format. We did, however, use the examples
of Gamma et al. [90] to evaluate the completeness of our pattern description.

Gamma et al. state three essential elements besides the the pattern name: the
problem, the solution, and the consequences. The problem describes what the con-
text is of the pattern, and when to apply it, which we have summarized in Section 3.4.
The description of the pattern, the solution, is covered in Section 3.5. Finally, the
consequences are split into two sections: Section 3.4 covers the positive consequences
by linking them to the problems that are solved. Section 3.6 covers the negative con-
sequences by stating several research challenges for future work.

The format that Gamma et al. use to describe patterns consists of thirteen different
sections. While these sections cover the four essential elements, the related pattern

Section 3.9 — Threats to Validity | 71

section should be discussed on its own. The design of a software system is never the
application of a single pattern, but rather the combination of different patterns that
together form the design. This is no different in ESSs. Section 3.5 recognizes this,
and explains the combination of event sourcing in CQRS in great detail. The relation
to other patterns to solve the specific challenges of schema evolution are covered in
Section 3.7.

A second question that must be asked is whether academic fora are the optimal
place to publish patterns. As whole books have been written about particular patterns
and as patterns appear to have a certain shelf life, one could wonder whether patterns
should be published in academia at all. We argue, with this article, that some patterns
are too important to ignore (SOA, Client-Server, Event Sourcing, etc.) and that these
deserve specific detailed attention from academics. We find the strongest proof for
this in the provided research challenges (Section 3.6) and in the challenge discussion
about evolving event sourced systems (Section 3.7).

The number of interviews does not allow us to generalize the results. It is not pos-
sible to prove that, because 14 engineers use the technique weak schema, it is the rec-
ommended technique. However, practitioners can integrate the reported experience
into their decision-making. They can weigh the context of the interviewed engineers
and match that with their own context. Although our research does not result in hard
recommendations, we believe that practitioners can benefit from the reported experi-
ences.

3.9 Threats to Validity

Both Golfashani & Nahid [94] and Onwuegbuzie & Leech [178] discuss the challenges
of assessing validity in qualitative research. We identify several biases for both internal
and external validity. First, we regard the objects of study; i.e., the engineers and their
uses of and experience with the pattern. The contributions of our research are based
on the 25 interviews that were conducted. The engineers were not hand selected,
but volunteered. Therefore, it is possible that we only interviewed a particular subset
of practitioners, who were willing and able to discuss the pattern at length. It is for
instance remarkable that they all combine CQRS with event sourcing. Table 3.1 shows
a diverse variety of experiences, and Table 3.2 shows an equally diverse variety of
systems. We have interviewed consultants (E14 and E16), and full-time employees,
with a wide range of years of experience. From small systems to multi-million user
systems, the interviewed engineers have been exposed to all. These characteristics
indicate a broad range of opinions and experiences. Within the group of 25 engineers,
16 engineers have three years or less of experience working on ESSs. This could be
due to the relative novelty of the pattern. However, these engineers were involved full-
time in the development of the ESS. The exploratory questions (Section 3.11) focus
on topics that can be sufficiently answered by engineers with one or two years of
experience.

Internal validity, which is strengthened by the way in which the research is con-
ducted, has been defended in several ways. First, an interview and analysis proto-
col (Section 3.11) had been applied to each interview. The interview protocol was

72| Chapter 3 — An Empirical Characterization of Event Sourced Systems

created from extensive literature study and discussion in the research team, in which
two members have no experience with the pattern itself, thereby reducing bias. The
first two authors have extensive experience in developing a large ESS. This experience
has led to many interactions with practitioners in gatherings, conferences, and online.
These interactions have served as an informal triangulation that support the findings
presented in this article.

As a constructivist GT approach [33] was followed, we conducted relatively open
interviews. The exploratory nature of the interviews enabled interviewees to comment
on all aspects of the subject under study, independent of the experience of the engineer
with the pattern. Many engineers work on closed-source, commercial systems, which
makes it hard to use documentation or source code in the research. Every interview
was closed with the question if anything important was left unasked, and if they knew
other engineers that we should interview. Often the engineers came with stories and
anecdotes that amplified the discussed topics. The engineers that were referred to us
were all invited to cooperate.

External validity, i.e. generalizability to other cases, can be defended by the multi-
tudes of systems that the engineers have observed and worked on.

As already discussed in Section 3.2, we do not claim to have reached saturation.
Not reaching saturation could leave us open to missing crucial information, or even
using incorrect information. Seven of the interviewed engineers have five or more
years of experience, and we did not find conflicts between their statements and the
other interviews. Together with the experience of the first two authors in developing
ESSs, we believe that our findings are supported by the data.

We have not covered all niches in the software world, so we can not generalize to
all types of systems. However, we do believe that in the domain of business informa-
tion systems, we have sufficient coverage to claim generalizability to other systems
in this domain. Furthermore, we do believe that other domains can be inspired by
our findings in designing event sourced systems. Also, the common occurrence of all
event sourcing evolution techniques in Table 3.7, illustrates that we observed a broad
cross-section of systems in use. Finally, the use of GT has provided us with a reliable
manner of extracting concepts and definitions from the interviews. While this study’s
findings can be generalized to describe event sourced patterns, the research work is
not finished.

3.10 Conclusion

In this article we present a conceptualization of the event sourcing pattern, grounded
in interviews with 25 event sourcing engineers. Event sourcing is a pattern that solves
the three problems that modern systems face. The flexibility that the combination
of event sourcing and CQRS gives decreases the complexity in large systems. The
decrease of complexity enables the development of larger systems that remain main-
tainable. The reliability of the system improves when every state change is stored in a
durable store. It allows engineers to undo state changes that were incorrect, or replay
those state changes after system failures. An improved reliability is essential for sys-
tems that provide increasingly critical processes. Finally, systems that serve increasing

Section 3.10 — Conclusion | 73

numbers of end-users benefit from the improved scalability that ESSs systems provide.

These benefits give enough reasons to incorporate event sourcing in modern sys-
tems. This article presents a thorough description of the pattern, including the context
in which it is applied and the consequences that are encountered. The description it-
self is grounded in the experience of 25 engineers, making it a reliable source for both
new practitioners and scientists. We answer the following four research questions in
this work.

What types of systems apply event sourcing, and why? The overview of 19 systems,
given in Section 3.4 and especially in Tables 3.2 and 3.4, show that event sourcing can
be applied in systems of any size: both smaller and larger systems benefit from the
pattern. We studied systems with thousands of events up to and including systems
with billions of events, and according to their engineers all of these systems have
benefited from event sourcing. As E14 states “I have never seen an event sourced sys-
tem that was rewritten to a system with traditional current state storage.” The event
sourcing pattern is not tied to a specific type of application, but is applied in many
different domains, such as marketing, micro-lending, content management and classi-
fied advertising. The systems under study show a strong relation to DDD as a software
development approach. This is partially explained by the fact that event sourcing and
CQRS were invented in the community that grew around DDD. The microservice ar-
chitectural style has a weaker relation (8 out of 19 systems apply it), while CQRS is
used in all these systems. We identify four reasons for event sourcing: audit, flexibil-
ity, complexity, and trending. While a common characteristic of event sourcing is the
immutability of the events, we show that there are three levels of immutability that
can be found in ESSs. The characteristics summarized in 3.2 substantiate that event
sourcing can be applied in a diversity of domains and technologies.

How can event sourced systems be defined? Section 3.5 gives definitions of the
different concepts in event sourcing and event sourced systems. These definitions are
based on our five years of experience in building an ESS, and they are augmented with
the interviews. The experiences of the interviewed engineers add nuance and varia-
tion options to the different concepts, making them reflect the view of practitioners.
Concepts and codes extracted from the interviews scoped our definition: the engineers
provided us with topics to define through the interviews.

How can event sourced data structures be evolved? Five event schema evolution
techniques are discussed in Section 3.7: versioned events, weak schema, upcasters, in-
place transformation, and copy-transform. For every technique the benefits and liabili-
ties as discussed with the interviewed engineers are summarized in Table 3.7. Almost
all engineers have experience with multiple techniques, often combining them in a
single system. As all techniques have their benefits and their liabilities we did not find
a single technique that would be applicable in all scenarios. We conclude the section
with general advice on when to apply specific techniques, and how to combine the
techniques.

74| Chapter 3 — An Empirical Characterization of Event Sourced Systems

What are the challenges faced in applying event sourcing? Five challenges that the
interviewed engineers experienced are discussed in Section 3.6 and summarized in
Table 3.6. We address the steep learning curve in Section 3.5 by giving definitions and
operations that can be used in discussing and teaching ESSs. Evolution is discussed in
detail in Section 3.7, again using the concepts and operations to explain and character-
ize the different techniques. The other three challenges, lack of technology, rebuilding
projections, and privacy, are presented as a start for a research roadmap. We call for
researchers to further explore these challenges.

The main scientific contributions are found in Sections 3.2 and 3.6. In the research
approach, we aim to inspire future architecture researchers to use similar qualitative
techniques, such as GT, for the explication of architecture knowledge from practi-
tioners. Secondly, a set of research challenges is provided for software engineering
researchers to challenge the knowledge around event sourcing in large software sys-
tems. Additionally, we are excited to define and document such an important software
pattern for the scientific community.

3.11 Interview Protocol

Context related questions

1. Please introduce yourself, the company, the product, and your role in the devel-
opment.

(a) How many years is the system in production?

(b) How many installations are there of the system (single on-premise custom-
made, single cloud SaaS, multiple on-premise customers, ...)?

(c) What is the load on the system in terms of users/ traffic (events?)? Can you
give a rough estimate?

2. Why is event sourcing applied in this software system?

(a) If this decision is already a few years old, is event sourcing still applicable
of would the team decide otherwise with the current knowledge?

3. What is the technology stack?

4. Could you give a summary of the size of the system in terms of event sourcing?
For instance in terms of different stream types, stream instances and number of
events.

Versioning related questions

5. What strategy do you use for event versioning? (Elaborate on the why)
(a) When using weak serialization: How do you deal with not being able to
perform certain operations? Does it bother you, or not?
(b) When using upcasters: How many upcasters are there? What is the longest
chain of upcasters? How do you manage them?
(c) When using in-place scripts: How do you validate the correctness? What
about the audit log, how do you deal with re-writing?

Section 3.11 — Interview Protocol | 75

(d) When using conversion: How long does it take? What about the audit log,
how do you deal with re-writing?

6. Do you need/ want the audit features? (What is the level of immutability?)
7. What is your strategy for the query-side? How do you keep this in sync?
8. How often are new versions released, and who performs the upgrade?
9. What kind of upgrade strategy is used? How do you deploy an upgrade?
(a) Do you have any SLAs based on the domain/product? (such as 24/7, 9 to
5)

Other topics

10. Do you use ProcessManagers/Sagas? Anything special for those?

11. Are you satisfied with the current upgrade and versioning strategy? If not, what
would you like to see differently?

12. What do you see as future challenges of ESSs?
13. Can you apply event sourcing without DDD?
14. What would your approach be to building a huge system?

Closing

15. What did we miss? What should we have asked?
16. With whom should we talk?

Acknowledgements

The authors thank all the engineers for sharing their valuable experience and their
willingness to contribute to this study. Furthermore, we would like to thank Paris
Avgeriou, Fabiano Dalpiaz, Jurriaan Hage, André van der Hoek, John Mylopoulos,
Alexander Serebrenik, Jan Martijn van der Werf, Greg Young, Uwe Zdun, and all the
anonymous reviewers for their constructive feedback on earlier drafts.

Data Package: Accompanying
Anonymized Transcripts

For the research in Chapter 3 we conducted 22 distinct interviews with 25 engineers.
The interviewed engineers are event sourcing practitioners in the roles of developers,
architects, and product owners.

The interviews were transcribed and interpreted using constructivist grounded the-
ory. The anonymized transcripts of the interviews with 25 engineers on their experi-

ence applying Event Sourcing, with the accompanying classifications are made avail-
able [188].

Part 111

API Management in Software
Ecosystems

API-m-FAMM: a Focus Area Maturity
Model for API Management

Context: Organizations are increasingly connecting software applications using
Application Programming Interfaces (APIs) to share data, services, functionality,
and even complete business processes. However, the creation and management of
APIs is non-trivial. Aspects such as traffic management, community engagement,
documentation, and version management are often rushed afterthoughts.
Objective: In this research, we present and evaluate a focus area maturity model
for API Management (API-m-FAMM). A focus area maturity model can be used
to establish the maturity level of an organization in a specific functional domain
described through a number of areas. The API-m-FAMM addresses the areas Life-
cycle Management, Security, Performance, Observability, Community, and Com-
mercial.

Method: The model is constructed using established methods for the design of a
focus area maturity model. It is grounded in literature and practice, and was
developed and evaluated through a systematic literature review, eleven expert in-
terviews, and five case studies at software producing organizations.

Result: The model is described in detail, and its application is illustrated by six
case studies.

Conclusions: The evaluations are reported on, and show that the API-m-FAMM is
an efficient tool for aiding organizations in gaining a better understanding of their
current implementation of API management practices, and provides them with
guidance towards higher levels of maturity. The detailed description of the con-
struction of the API-m-FAMM gives researchers an example to further support the
available methodologies, specifically how to combine design science research with
these methodologies. Additionally, this studys unique case study design shows
that maturity models can be successfully deployed in practice with minimal in-
volvement of researchers. The focus area maturity model for API Management
is maintained on www. maturitymodels. org, allowing practitioners to benefit
from its useful insights.

This work was originally published in Information and Software Technology, volume 147
(2022), titled ‘API-m-FAMM: a Focus Area Maturity Model for API Management’. It was co-
authored by Max Mathijssen and Slinger Jansen.

www.maturitymodels.org

82| Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for API Management

4.1 Introduction

In recent years, there has been an increasing demand among organizations to have
access to enterprise data through a multitude of digital devices and channels. This
demand is also increased by the transformation from software product towards a plat-
form, called ‘platformisation’ [193]. Platforms are a vehicle for software ecosystems
and are defined as a set of organizations collaboratively serving a market for software
and services [126]. In order to meet these demands, enterprises need to open up and
provide access to their assets in an agile, flexible, secure and scalable manner [53].
These assets include matters such as raw and cleansed data or functionality that per-
form complex calculations or data processing based on inputs [266]. Access to these
assets may be provided by utilizing Application Programming Interfaces (APIs). De
[53] defines an API as a software-to-software interface that defines a contract for ap-
plications to communicate with one another over a network, without the need for any
user interaction.

As shown by an analysis conducted by ProgrammableWeb [221], known as the
largest directory of APIs, the usage and offering of APIs has evolved from a curios-
ity to a trend since 2005. This observation is further supported by a survey conducted
by Coleman Parkes Research [41], showing that 88% of global enterprises have some
form of an API program. Furthermore, the survey found that respondents experience
a wide variety of benefits from their API programs, including an average increase
in speed-to-market of around 18%. These statistics signal the emergence of the API
Economy, in which organizations are offering access and the ability to recombine their
digital services and products for novel value creation [12]. As a result, by making
their APIs accessible to external or partner consumers, these organizations are able to
reach new markets, enable their business strategy, and drive the creation of new inno-
vative solutions [26]. After an API has been created it needs to be managed so that
developers may easily integrate it into their applications. API management is done by
performing activities such as providing helpful documentation, controlling access to
the API, as well as monitoring and analysing its usage.

Medjaoui et al. [162] list three reasons that make it hard for organizations to im-
prove their API management activities. First, organizations that are performing well
in terms of their API management programs often do not have the time, resources or
personnel to share their experience and expertise with third parties. Secondly, organi-
zations that are careful with regard to the amount of knowledge they share on their
API management expertise might consider their know-how to be a competitive advan-
tage, and will as such not feel urged to make their findings public. Finally, even in
the event where organizations share their experience at public conferences, articles or
blog posts, the information shared is usually company-specific and difficult to translate
to a wider range of organizations’ API programs.

Focus area maturity models (FAMMSs) [235, 236] are an established method to com-
municate extensive domain knowledge. Not only do they contain this knowledge, they
also offer a clear path for organizations to improve their maturity in a certain domain.
In this article we present the API-m-FAMM, a focus area maturity model for API man-
agement. We show that this model improves on existing API management assessment

Section 4.2 — Related Work | 83

frameworks and tools in terms of transparency and availability, and that it can be used
by organizations that expose their API(s) to third-party developers to assess and eval-
uate their degree of maturity with regards to API management. We also extensively
describe the methods that are applied in constructing the FAMM, and improve the
available design methods by providing a concrete and detailed example. Additionally,
explicit attention is paid to support organizations in performing their own assessment
by using a do-it-yourself kit that we created and supplied to organizations.

Section 4.2 provides an overview of existing assessment models for API management
and discusses their strong and weak points. A description of our research approach
is given in Section 4.3, including the detailed steps that were taken to develop the
FAMM. Section 4.4 describes the API-m-FAMM and Section 4.5 discusses how it is ap-
plied in four different companies. The results of these case studies are discussed in
Section 4.6, while Section 4.7 discusses focus area maturity models in general. The
threats to validity are discussed in Section 4.8. Section 4.9 summarizes our findings
and contributions, among which are the previously undefined framework for API man-
agement, a detailed description of the construction of a focus area maturity model
using both an existing methodology as well as tools from design science research, and
finally an example of how we can make focus area maturity models more accessible
by investing in their usability.

4.2 Related Work

In an effort to guide organizations in successfully managing their API programs, a
number of commercial frameworks and tools exist with which organizations may eval-
uate and assess their API management approach and capabilities. In this section these
existing frameworks, tools, models, reports and case studies are summarized and dis-
cussed. The existing frameworks and tools are assessed on several attributes. First
of all we discuss availability, some frameworks are only available commercially and
require extra costs. Secondly we discuss the grounding of the framework, some frame-
works are grounded in scientific literature, others only in experience from an industry
setting, and one framework is grounded in both. Finally we discuss the transparency
of the framework: can we find details on how this framework is constructed. As be-
comes apparent, these frameworks are either not publicly available, transparent or
grounded in academic literature.

Accenture API Management Suite - Based on their experience with implement-
ing API programs, Accenture Technology Labs has developed a Maturity Model for
APIs [251]. The Accenture model consists of 5 maturity levels, and is aimed to-
wards helping organizations identify the maturity of their API management capabil-
ities. These maturity levels are mapped onto five distinct dimensions, which detail
the processes an organization should implement in its journey from API enablement
to industrialization. However, this maturity model fails to address certain core API
management-related processes and capabilities such as versioning, threat protection
and lifecycle management. The model is also quite outdated, and has since been dep-
recated, as it is no longer available on Accenture’s official website. Additionally, in
part due to its industrial foundation and commercial nature, it is unclear as to how

84 | Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for API Management

the contents of this model have been populated.

Endjin Maturity Matrix - This maturity matrix [68] is a tool that was developed to
aid business decision-makers in assessing their organization’s ability to evolve towards
an API-driven business model. The assessment is performed by having the organiza-
tion fill out their perceived degree of maturity related to a set of categories, based on
which practical suggestions for improvement are then provided.

While this maturity matrix comprises a selection of categories that are relevant in
the scope of API management such as governance, documentation and support, it
mainly focuses on strategies and commercial aspects. As a result, many API management-
related aspects such as traffic management and community engagement are missing
from the matrix.

WSO02 Platform Evaluation - In 2015, WSO2 published a whitepaper that describes
digital business goals, outlines API-oriented IT initiatives, and presents API manage-
ment platform requirement categories [271]. Alongside this whitepaper, an evaluation
matrix spreadsheet is provided that details a set of evaluation criteria, which may be
used to evaluate API management platform vendors [102]. In illustrating the disci-
pline of API management, two types of APIs are discerned: naked and managed APISs.
A naked API is considered to be not monitored, managed, secured, documented or
accessible through a self-service subscription portal, a managed API on the other hand
is thought to be actively advertised and subscribable, available alongside a published
service-level agreement (SLA), secured, authenticated, authorized, protected, as well
as being monitored and monetized by using analytics. The whitepaper argues that to
move from naked to managed APIs, the API facade pattern should be implemented,
which enables teams to layer network-addressable endpoints, monitor usage, enforce
usage limits, manage traffic, and authorize consumers. According to WSO2, an API
management infrastructure should guide teams towards best practices with regard to
six main focus areas. However, it is unclear as to whether organizations are supposed
to assign themselves scores, or whether they are assisted by WSO2 in this process.
Furthermore, while a ‘weighted score’ column is included in the matrix, it is unclear
what these weights are based on, or what formula is used to calculate the weighted
scores. Due to the fact that this whitepaper and matrix were written by WSO2, which
is a commercial API management platform provider, organizations are steered towards
selecting the WSO2 platform.

Gamez Gateway Comparison - As part of their work, which seeks to analyze the
API Gateway paradigm and propose a SLA-Driven solution in an API Gateway design,
Gamez Diaz, Fernandez Montes & Ruiz Cortés [89] have compared API management
features offered by various API gateway providers. This collection of providers consists
of 13 Gateways including: 3Scale, Akana API Gateway, API Umbrella, Apiaxle, Apigee
Edge, Axway API Gateway, Azure API Management, CA API Gateway, Mashape, Mashery
API Gateway, Monarch API Manager, Repose and WSO2 API Management. The afore-
mentioned gateways were compared as based on a set of features such as Security,
Pricing plans support, and Lifecycle Control. Confusingly, in their work, Gdmez Diaz,
Fernandez Montes & Ruiz Cortés [89] use the terms ‘API gateway’ and ‘platform’ in-
terchangeably. As a result, it is unclear whether the intention of the authors was to
analyze features offered by the API gateway component, which is one of the main ar-

Section 4.2 — Related Work | 85

chitectural components offered by the listed API management platform providers, or
features provided by the platforms as a whole. Moreover, the set of features the afore-
mentioned API gateways are compared on is very limited when compared to work on
API management by authors such as De [53].

Broadcom Playbook - In order to promote their API management platform, called
Layer7, Broadcom has employed CA Technologies to compose an ’API Management
Playbook’ [27]. This playbook is targeted towards helping its readers comprehend
the various reasons for API’s importance in business, the API lifecycle and its rela-
tion to API management, the essential capabilities of an API management solution,
and the features offered by the Layer7 platform. An evaluation method is presented
which considers API management capabilities based on a collection of 13 use cases, or
‘plays’. These use cases are broadly classified as having the goal of: API integration
and creation, security, mobile and internet of things (IoT) development acceleration,
and unlocking the value of data.

It is clear that even though this work presents an useful overview of API manage-
ment capabilities, this overview directly matches the features offered by the Layer7
solution. As such, it may be concluded that the main purpose of this work is to con-
vince and attract potential customers to Broadcom’s platform. Furthermore, due to
the commercial nature of this document, it cannot be considered transparent in the
sense that the source of the presented information is not known.

Accenture Advisory Report - In addition to their maturity model, Accenture has
also published a consultancy report in 2019, advising banks on how to implement API
management [150]. Even though this report is specifically focused on the banking
sector, and as a whole may thus be difficult to generalize and apply to other sectors, it
contains several frameworks, figures and models that are related to this study.

The presented capability overview may be utilized by organizations seeking to im-
plement API management processes, or may aid them in identifying API management
platform capabilities that cater towards their needs. Furthermore, considering the
aforementioned pillars are described in great detail and provide clear-cut guidelines
for organizations to follow, this advisory report may be beneficial to organizations
wishing to implement API management. However, when compared to the earlier
described maturity models and frameworks, it may be difficult for organizations to
self-assess their degree of maturity concerning API management.

Gartner Guidance Framework - Published by Gartner in 2019 [93], this report
is similar to those published by WSO2 and CA Technologies. It is aimed towards
assisting technical professionals in selecting an appropriate API management platform.
The general outline and structure of the framework are visible by reviewing the table
of contents. Judging from this outline, it may be concluded that the framework is
grounded in literature, using De [53]’s work on API management as a foundation.

Devoteam Case Study - On their website, a Dutch company called Devoteam sum-
marizes a case study in which the implementation of an API management platform at
a large organization, Liberty Global, is described [57]. As part of this case study, the
case organization is described to have initially implemented an API gateway, which is
argued to be an incomplete solution when compared to an API management platform.
Furthermore, the organization required API management capabilities such as devel-

86| Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for API Management

oper and partner onboarding, lifecycle management, documentation and testing, and
analytics, which Devoteam [57] does not consider to be capabilities that are typically
provided by an API gateway.

In order to recommend an appropriate API management platform to the case com-
pany as based on their needs, an ‘integration cookbook’ was created, documenting the
principles and guidelines for the usage of the API management platform and the differ-
ent integration patterns. Unfortunately, similarly to the earlier described framework
by Gartner, this cookbook is not publicly accessible. However, Devoteam [57] men-
tions that it comprises policies that range from security policies, such as OAuth 2.0,
OpenID Connect, basic authentication and IP whitelisting, to operational policies and
monitoring and auditing policies. Judging from this information, it seems as though
this cookbook primarily focuses on strategy, governance, and API management vendor
evaluation and comparison. Due to its commercial nature however, it is unknown as
to how this cookbook was created, whether it is able to be used to assess an organiza-
tion’s degree of maturity with regards to API management, or how complete it is.

A summarizing comparison matrix is presented in Table 4.1, which compares the
artifacts. From the discussions of the different frameworks it becomes clear that the
frameworks and tools either have a different goal (support consulting or platform
selection), are not complete (missing capabilities), are not publicly available, or are
not transparent in their construction. Our model combines the goal of evaluation
and knowledge sharing, is publicly available, is transparent in the construction of the
model, and describes the complete set of capabilities and practices for API manage-
ment.

4.3 Research Approach

As discussed in the previous section, organizations that employ API management ac-
tivities have no tools or frameworks at their disposal with which they may evaluate
and improve upon their business processes regarding the topic of API management,
that are publicly available, transparent, and grounded in both literature and industry.
Despite growing interest in the topic of API Management in industry, more research
is needed in order to fill knowledge gaps and identify best practices regarding the
subject. Based on this problem statement the following research question is formu-
lated, ensuring this research succeeds in achieving its goals. How can organizations
that expose their APIs to third parties evaluate their API management practices?

Maturity models have been developed for organizations to use as an evaluative
and comparative basis for improvement, in order to derive an informed approach for
increasing the capability of a specific area within an organization [25]. Moreover, ma-
turity models have been designed to assess the maturity of a specific domain based on
a set of criteria, and are a proven tool in the creation of collections of knowledge of
practices and processes about a particular domain [14]. Maturity models consist of
a sequence of maturity levels for a class of objects, which typically include organiza-
tions or processes. The aforementioned sequence represents an anticipated, desired,
or typical evolution path of these objects as discrete stages [196]. In order for an orga-

| 87

Section 4.3 — Research Approach

*[TeI3p JO [9A3] MO & pey AJ[eds1dA s[opour 93 Jo 2k ul
soonoed 913 Jo suondLIdSIp 13 1Byl PIIOU 9 ISNUI] "JUSUSSISSE JUdWIFeurw [dy J0J S[00] PUE SIoMIUIe1j SunsIxs jo uostreduro) 1 9[qeL

UOT1D3[3S)00q¥00D) Apnig asen

ON 91027 Ansnpu] [eDISWWOD uLIojie[d umowyu) R Apmg ¥seD wes10A9(

NIomawel]

QInIeIAI] U013 JIomawej QouBpIND

ON 610C R Ansnpul [eDISWWOD uIojie[d umowun uonenfeay Isuien

3ur3d3of 11oday

urreys ‘uone[SURI) 20BJIAIUL A10SIADY

ON 610T Ansnpup o1qnd a3paymoy 91oddns asq Todedayp 2INIUDY
durd3of

110ddns ‘uone[SURI) 90BJIAIUI yooqAe[d

ON 610C Ansnpujy anqnd dunnsuo) ‘QuawadeuRW UOISIDA Todedaarypm wodpeorg
Gunoyruowr

‘uawadeuRW dyjen) uostreduo)

UOoM[3s ‘uonezuoyine ioddns XIDRIN Aemaren

SOK GI0Z 2Imerar] anqnd uIojie[d x Surpieoquo AdQg uostredwo) Zowen

X11) uoneneay

[aREIEN -eul uopeneAy uIojie[d

ON S10Z Ansnpujy anqnd urIofed 1oddns nag R Jodedanypm ZOSM
Gunoyruowr
‘UoOnR[SURI) 9DBJISIUT

‘QuawaSeurw dIjen XLIBIA

‘3urpIeoquo ‘Adp XLIRIA Auniey

ON 1102 Ansnpup o1qnd uonenfeay ‘JuawadeuRW S[IAIIT Aumye urfpuyg

uonezLoyne ans

‘uonoaloid 1By [PPOIN JuswaSeUR

ON +¥10T Ansnpup o1qnd uoneneag ‘3uruorsiap AumeN [V 2IMUaddy

juaredsuel], paysiqngd Suipunoin AI[Iqe[IeAy eoo JUDIU0D JUISSTIA adAy, yIomaurelq

88| Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for API Management

nization to progress along this path, criteria and characteristics relating to capabilities
or process performance are included which need to be fulfilled to reach a particular
maturity level. The lowest stage of this path represents an initial state that may be
characterized by an organization having little capabilities with regard to the domain
under investigation. Organizations whose capabilities are of the highest maturity are
located at the highest stage. Maturity refers to being well equipped to fulfill a purpose,
i.e. having a higher level of sophistication, capability, or availability of specific charac-
teristics [167]. To appraise an organization’s maturity, maturity models are commonly
applied to assess the as-is-situation regarding the given criteria, so that improvement
measures may be derived and prioritized [119].

As De Bruin et al. [54] and Steenbergen et al. [236] argue, the most well-known ma-
turity model within the field of Information Systems is the Capability Maturity Model
(CMM) from the Software Engineering Institute [190]. Studies have shown that since
its inception, the CMM has inspired the development of hundreds of subsequent ma-
turity models. These maturity models are aimed at a wide variety of domains and
topics, including, for example, project management [45], corporate data quality man-
agement [114], service integration [8], and offshore sourcing [30]. Another example,
which has been discussed in Section 4.2, is Accenture’s APl management maturity
model [251].

An improvement over the maturity model is the Focus Area Maturity Model
(FAMM) [235, 236]. A FAMM allows a flexible number of maturity levels and assesses
the maturity per focus area which results in a more detailed evaluation. We follow
the meta-model of FAMMs as presented by Jansen [125] (shown in Figure 4.1), his
work describes the development of a FAMM for the functional domain of software
ecosystem governance. The functional domain is described by the set of focus areas
that constitute it. Each focus area is composed out of a set of capabilities, which in
the case of the API-m-FAMM are defined as the ability to achieve a goal related to API
Management through the execution of two or more interrelated practices. Together,
these practices and capabilities form the focus areas which describe the functional do-
main of which API management is composed. A practice is defined as an action that
has the express goal to improve, encourage, and manage the usage of APIs. Each indi-
vidual practice is assigned to a maturity level within its respective capability. In order
to establish an organization’s degree of maturity with regard to the functional domain,
the organization is asked to answer assessment questions linked to the capabilities
the maturity matrix consists of. Based on the results of this maturity assessment, the
organization is then guided towards incremental development of the domain, through
a set of improvement actions with regard to the (missing) capabilities.

We apply the design methodology of Steenbergen et al. [235] and De Bruin et al.
[54] in constructing our FAMM. The development of the FAMM is done in five phases:
Scope, Design, Populate, Test, and Deploy. These phases are executed through a Sys-
tematic Literature Review (SLR), expert interviews, case studies, and numerous dis-
cussions among the authors. Every phase concluded with the authors discussing the
state of the model until consensus was reached on its contents and structure. This was
done using online Card Sorting [175], with Google Drawings as a tool. In the Scope,
Design, and Populate phases, the input for these discussions primarily consisted of the

Section 4.3 — Research Approach |89

Functional Domain Capabilities

A

Result in

Model
Components

Maturity Levels

A

Are contained in

Practices

A
Contain sets of
Capabilities
A
Contain
Address Focus Areas \ Address
Implementation Institutionalization

Figure 4.1: The meta-model of focus area maturity models as used in this research.

practices found in the different sources. The authors used card sorting to categorize
these practices into capabilities, and to categorize the capabilities in areas. The var-
ious sources were used as inspiration for the discussions. During the Test phase the
experts were also asked to comment on these categorizations. Comments that were
deemed to be correct were then integrated into the model. Practices were assigned to
a maturity level based on the ordering of practices within a capability and identified
dependencies. In every phase we identified dependencies between the different prac-
tices. When a practice depends on a practice with maturity level [, the practice itself
should have at least maturity level [+ 1.

Figure 4.2 shows which methods were used in each phase, linked to the different
intermediate versions of the API-m-FAMM. We use these versions to reference a cer-
tain point in the construction of the model. A full description of the changes made
during the different phases is available through the source data [159]. The source
data also details the dependencies between the different practices. This document
was published at different points: v1 of the source data corresponds with v0.2, v2 of
the source data with v0.3, v3 of the source data with v0.4, and v7 of the source data with
v1.0.

The initial model (v0.1) used the work of De [53] as a starting point. Next a
SLR [158], based on the methodology developed by Okoli [176] and guidelines com-
posed by Kitchenham & Charters [138], was used to further design and populate the
model (resulting in version v0.2). In this SLR a comprehensive overview of literature
related to API management was collected. This was accomplished by entering a series

90| Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for APl Management

API Gre
Management, SLR Jit ty
De B. (2017) iterature

A 4 A 4 A 4 A 4 A 4 A 4
Figure 4.2: The steps executed in construction and the different intermediate versions of the
API-m-FAMM.

Expert Expert

'
'

'

'

! .
' . ; . Case studies
' interviews conformation

'

'

'

'

'

!

of relevant keywords in a list of scientific libraries, resulting in the extraction of an ini-
tial collection of 5152 books, research papers, theses and white papers. After having
applied a set of inclusion and exclusion criteria, as well as removing duplicates, this
collection was narrowed down to 43 published works. Next, the features API Manage-
ment consists of were identified and extracted in the form of practices and capabilities
from the complete body of literature. As a result of scanning and coding the body of
included literature, 39 capabilities were identified and extracted. Among the 32 pa-
pers that were found to contain at least one practice or capability, 114 practices were
identified and extracted.

To ground the model in both academic literature and industry experience two extra
sources were used to construct the model. The collection of practices and capabilities
resulting from the SLR are verified by using information gathered from grey literature,
which includes white papers, online blog posts, websites, commercial API management
platform documentation and third-party tooling (resulting in version v0.3).

Furthermore, experts on this topic are consulted to verify that the contents of the
API-m-FAMM are complete and correct. To ensure that the selected experts are expe-
rienced and knowledgeable regarding the subject a purposive sampling technique is
used, which refers to the deliberate choice of a participant due to the qualities the
participant possesses [73]. The process of expert selection and interviews is visualized
in Figure 4.3. Potential participants were identified and contacted through the usage
of the partner network of AFAS Software (the company where the first and second
authors are employed at). Additional potential participants were identified and con-
tacted through the usage of the professional network of the authors. Furthermore,
potential participants on both the API provider and consumer side are contacted. This
ensures that knowledge stemming from both perspectives of API management is incor-
porated into the API-m-FAMM.

In order for the expert interviews to produce useful results, participants should be
experienced and knowledgeable with regard to the topic of API management. As such,
participants should adhere to the following requirements:

1. potential participants must indicate to be knowledgeable on a minimum of two

out of the six focus areas of the API-m-FAMM,;

Section 4.3 — Research Approach | 91

Participant selection Expert interviews Expert conformation

Participants Activity Participants Activity Participants Activity

Author's
professional
network

Semi-

structured Selected
Expert experts (3)

Interviews

Unstructured
Expert
Interviews

Selected
experts (9)

[Apply selection
criteria

Partner &
customer
network
AFAS
Software

API-m-FAMM API-m-FAMM API-m-FAMM
v0.3 v0.4 v0.5

Figure 4.3: The process of expert selection explained. First we selected possible experts based
on the author’s professional network and the case company’s partner and customer network.
While 50 experts were invited, eleven experts responded to the survey. We selected nine experts
by applying our selection criteria and interviewed them using v0.3 of the model. The results
of these interviews were integrated in v0.4. From the nine experts we selected three experts to
conduct extra conformation interviews. The results of these interviews were integrated in v0.5.

2. potential participants must have a minimum of 3 years of experience with ei-
ther consuming, developing, integrating, providing, versioning, monitoring or
managing APIs;

3. potential participants must be working at an organization as an architect, devel-
oper, engineer, or product owner as part of a team working with APIs, or as a
CTO, IT consultant or any comparable role.

In order to establish whether the potential participant satisfies the first requirement, a
short preliminary survey is sent out, requesting the potential participant to indicate the
degree of knowledge they possess with regard to the topic. 50 potential participants
were contacted through e-mail. The survey was sent together with a shortlist describ-
ing all the main elements that are contained in the API-m-FAMM, accompanied by a
description (based on version v0.3). After having read these descriptions, potential
participants are asked to denote their knowledge of the individual subjects through
the use of 5-point Likert scale questions. In order to verify the second and third re-
quirement, potential participants are asked to fill out their experience and current
role within their organization. Then, if the potential participant passed all imposed
requirements for participation, participants were asked to read an information sheet
and sign an informed consent form.

The sampling process resulted in the selection of nine experts, who are presented in
Table 4.2 (two respondents were excluded based on the knowledge assessment). This
ratio may seem high at first glance, but considering only one or two focus areas were
discussed during an expert interview, it was deemed to be unnecessary for participants

92| Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for API Management

2 w ¢ 3
g o 2 & B
3 2 3 8 =} 3}
E & » £ & §
E 8 8§ § £ E
]
Interviewee Experience Hours S & 5 = & S
API Evangelist 10+ 1 v v
CEO4 10+ 1.5 4
CEOp 10+ 5.5 v v/
Engineer 10+ 1 v 7/
IT Consultant 10+ 3.5 v /7 v
Product Manager 6 3 v
Lead Engineer 5 10+ 1 v 7/
Lead Engineerg 10+ 1 v /
Lead Engineerc 5 1.5
Total N/A 19 3 3 3 3 3 3

Table 4.2: Interviewees and the current role they fulfill within their organization, as well
as the years of experience they have with either consuming, developing, integrating, provid-
ing,versioning, monitoring or managing APIs. Additionally, it is shown which focus areas were
discussed with interviewees, as well as the duration of the interviews.

to be knowledgeable on more than two focus areas as only those particular focus areas
were included for discussion during interviews. Based on an interviewee’s knowledge
regarding the six focus areas the API-m-FAMM consists of, one or more focus areas
are selected for evaluation. Focus areas were evaluated through eleven interviews,
which resulted in each focus area being evaluated three times. These interviews were
subsequently transcribed and processed to incorporate all comments into the FAMM.

During the interviews, which are semi-structured in nature, the API-m-FAMM in
its entirety is first presented to the expert. Next, the focus area that is selected for
evaluation and each capability it comprises of is described. Then, all practices these
capabilities consist of are elaborated upon. For each capability, experts are asked
whether they are familiar with it and whether they believe it is assigned to the correct
focus area. Similarly, experts are asked whether they are familiar with each practice,
and whether they believe it is assigned to the correct capability. Additionally, they are
asked whether they can identify any dependencies with regard to the implementation
of other practices. After having answered these questions for a capability and the
practices it comprises, experts are asked to rank practices in terms of their perceived
maturity and complexity for each capability. This ranking exercise is performed by
using the same card sorting technique that was used to initially structure the API-
m-FAMM (via Google Drawings). Figure 4.4 shows an example ranking result of a
single capability. These results are analyzed and combined with any implementation
dependencies to create a final ranking of the practices (resulting in v0.4 of the FAMM).

The resulting version of the FAMM was evaluated through a second cycle of unstruc-
tured interviews with three experts originating from the same sample of experts that
were interviewed during the first evaluation cycle: Product Manager, IT Consultant,
and Lead Engineer o. These experts are knowledgeable on a large number of areas

Section 4.4 — The APl Management Focus Area Maturity Model | 93

Activity Access User
Logging Logging Auditing
Least Most
mature < CEOB > mature
Access Activity User
Logging Logging Auditing
Least Lead Engineer A Most
mature mature
Access User Activity
Logging Auditing Logging

Least - Most
Engineer
mature mature

Figure 4.4: Ranking of practices in the capability Logging (intermediate practices are shown as
an intermediate version was used during the interviews) as done by the experts.

and based on that criteria were asked to participate in the second evaluation cycle.
During these interviews the changes made to the FAMM were discussed and confirmed
(resulting in v0.5 of the FAMM).

Finally the model was deployed in four companies, by evaluating five different soft-
ware products. As a result of the case studies the model was changed by removing one
practice and improving the descriptions of three other practices. This resulted in v1.0
of the API-m-FAMM. The contents of the API-m-FAMM are discussed in Section 4.4,
and the case studies are described in Section 4.5.

4.4 The API Management Focus Area Maturity Model

The previous section motivates the usage of the focus area maturity model as an ar-
tifact to capture the functional domain of API management, and describes the meth-
ods used in constructing it. This section introduces the API Management Focus Area
Maturity Model and its contents: the API-m-FAMM.

The scope of the API-m-FAMM is the domain of API management: the API-m-FAMM
aims to support organizations that expose their API(s) to third-party developers in
their API management activities. Based on the SLR API management is defined as an
activity that enables organizations to design, publish and deploy their APIs for (external)
developers to consume. However, three adjustments are made to the scope of the API-
m-FAMM with respect to this definition.

First, considering that a prerequisite for performing APl management as an activity,
is for an organization to already have designed and created an API, the actual design
and creation process of APIs itself is excluded from the API-m-FAMM. These processes
overlap with software engineering in general and would require the inclusion of capa-
bilities such as agile software development and test-driven development. In contrast
however, the publication, maintenance, and deprecation (which are contained in the

94 | Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for API Management

API lifecycle) of APIs are included in the scope of the API-m-FAMM, considering that
these are concerned with capabilities such as lifecycle management, developer enable-
ment, security, and analytics.

Second, the management of internal APIs is not explicitly targeted with the API-
m-FAMM, in contrast to the management of partner and public APIs. Capabilities
such as developer enablement, security and analytics are of lesser importance with
regard to managing internal APIs, considering that these APIs are exclusively used
for internal app integration and development. However, the case studies (discussed in
Section 4.5) show that the API-m-FAMM still proves to be useful for such organizations
wishing to incrementally improve upon capabilities such as lifecycle management, and
performance of their API(s).

Finally, the API-m-FAMM seeks to provide practitioners with incremental capability
improvements that are tool-, technology-, and platform-independent. For example,
there are many tools that organizations may utilize to implement monitoring, com-
munication, and support capabilities. In the same vein, capabilities regarding traffic
management or security, such as authentication, authorization, and threat protection,
may be relatively straightforward to implement through the use of commercially avail-
able gateway or management platform solutions. However, some organizations may
opt to develop these solutions in-house, or may not wish to use such solutions for a va-
riety of reasons. To ensure that the API-m-FAMM is generalized for both these types of
organizations, comparisons between specific tools or management platform solutions
are excluded from the scope of the model. An example of practices that were removed
because of this are Visual Data Mapping, which is exclusively provided by the Axway
API management platform ! and Error Handling, which is implementable through the
use of the Apigee platform 2. Another example is the practice Standardized Autho-
rization Protocol, which was initially included as OAuth 2.0 Authorization, but was
renamed with a referral to the OAuth 2.0 protocol being included in its description
instead.

As discussed by De Bruin et al. [54], the design phase explains how the needs of
the intended audience are met through answering the why, how, who, and what ques-
tions. The ‘why’ for the API-m-FAMM is that its main goal is to assist organizations
that (plan to) expose their API(s) to third-party developers to assess and evaluate their
degree of maturity with regard to their API management capabilities. The ‘how’ is that
organizations can utilize the API-m-FAMM to assess their as-is situation with regards
to their API management capabilities, and then subsequently incrementally improve
upon these capabilities by implementing practices that are of a higher maturity. The
‘who’ involved in applying the API-m-FAMM may vary across organizations, depend-
ing on characteristics such as their size in terms of employees involved in the API
program, number of exposed APIs, and the degree of incoming traffic. For example,
for a small organization that exposes one mildly popular AP], it is likely that a small
number of employees are familiar with the API program and the activities involved in
managing it. These employees may then utilize the API-m-FAMM to assess the as-is sit-
uation, and then use the model as a road map to incrementally implement capabilities

Thttps://www.axway.com/en/products/api-management
2https://cloud.google.com/apigee/api-management?hl=nl

https://www.axway.com/en/products/api-management
https://cloud.google.com/apigee/api-management?hl=nl

Section 4.4 — The APl Management Focus Area Maturity Model | 95

and practices to reach a higher level of maturity. In contrast, a large organization that
exposes multiple, popular APIs that generate large loads of traffic, is likely to employ
multiple development teams, product owners and designers who are involved with the
API program. In this case, it is unlikely that a solitary employee or a small group of
employees will be able to assess the current as-is situation of the API program. Instead,
information for this assessment will have to be extracted through meetings with em-
ployees from varying teams and backgrounds who are involved in the various aspects
of API management, such as community engagement, security measures, monitoring
capabilities, and lifecycle management. Alternatively, consultants with a thorough un-
derstanding of API management and the API-m-FAMM may be able to apply the model
by conducting interviews with all relevant stakeholders involved in the organization’s
API program. The ‘what’ that can be achieved through the application of the API-m-
FAMM is an insight into the current maturity of an organization with regards to its
API management capabilities, as well as a path to incremental implementation and
improvement of more mature, specific practices.

The API-m-FAMM, based on the SLR, the expert interviews, and case studies, is
presented in Figure 4.5. Detailed descriptions, preconditions, and reference literature
can be found in the source data [159]. The FAMM consists of six focus areas, 20
capabilities, and 80 practices. The highest maturity level is 10.

During the expert interviews, part of the Test phase (see Figure 4.2), an interim ver-
sion of the API-m-FAMM, was measured on four criteria using Likert scale questions:

+ Operational Feasibility: How likely do you think it would be that an organi-
zation would actually use the API-m-FAMM in practice to evaluate and improve
upon their API management related processes?

+ Ease of Use: How easy do you think it would be to understand the API-m-
FAMM'’s content and use it to self-assess and evaluate your organization’s matu-
rity in API management?

+ Usefulness: How useful do you think the API-m-FAMM would be in providing
you and your organization with valuable and interesting insights in your organi-
zation’s API management related processes?

+ Effectiveness: How effective do you think the API-m-FAMM would be in helping
you and your organization improve on their API management related processes?

The results of this interim evaluation are listed in Table 4.3. These results should be
prefaced by a few initial remarks. Firstly, it should be noted that during the interviews,
an intermediate and unfinished version of the API-m-FAMM was presented to experts.
One of the implications of this is that maturity levels were absent from this version
of the model. Because of this, experts often found it difficult to envision what the
final version would look like, as well as to properly judge its ultimate capabilities and
potential for helping an organization in improving their API management maturity.
Additionally, only one or two of the six focus areas the model consists of were selected
for discussion, which, in some instances, impaired experts ability to grasp the API-m-
FAMMs scope as a whole on a conceptual level. Furthermore, the descriptions given
for the focus areas, capabilities, and practices during the interview were summarized
and shortened. Lastly, the experts had not familiarized themselves with the contents
of the API-m-FAMM prior to the interview taking place.

Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for APl Management

96 |

‘soonoead g pue ‘saniiqeded og ‘SeaIe sNd0j XIS Jo SunsIsuo) ‘Juswedeur [V 10§ [PPOUL AJLINJBUL BIIE SND0J B (AAVH-W-IdV YL :S't 2InS1]

spw Buimoiyy Buniwn Buiyoey swabeuepy .
dujel] dzplold awnjop exeq Addy elonp abeuepy a1ey 1sanbay Wiopiad | 91ey 1sanbay wioad | 1senbay sws|dw) I0d InoaLlL 198 oyjel] ce
Buijeos salollod Buileos Juswaldw Buouejeg uswabeuew .
aAIIPald uswaduw| J1an0jied Juswaduw| 1S 1w peoT wews|dwi 80In0say re
oueuwllojlad | ¢
Juswabeuepy uondhiouz sefke e
21018 Wwawsa|dw| Hodsuey] Juswajdw uondfiou3 ve
$5900Y }I0MISN MaIney 1000j01d Yoealg uonoal0Id :o:omSEonEh mmm‘_nw«mm__ fea uonoR10Id 3 2
1snu) 0se7 uawiidwy | A1noss 1onpuoy Aiunoas uswayduw| soq wawajdw) uonoeluy ey | g Molly JuoLaidul uonoaje(1ealyl
10001014 UoneZLOYINY
sadoog uonezuoyiny pozipiepuels Juawabeuepy |lonuo) uonezioyiny ‘7z
Juawajdw) uayo Juawalduw) $$900Y Juswa|dw|
awa|dwy
uo-ubi woneanuaipn UONEORUBLINY uoneonuayINY | L'z
9|6ulg wawsa|dw) fieonuayiny aiseg Juawa|duw| eonuay
swa|dwy
fAunoeg | z
uonewioyu| (s)jpuuey UOIEOLNO
amEumMm%%ﬁ_uﬂw.,m._g Buuoisiap ybnoys uonesynoN mwﬂwwcmm_:o %m % N gL
v v M IV puaia BuIOISIaA AINQUISIA Aiqisi repdn
|020101d Jewod e1eq [euIsiX3 | [SPOIN BIeq [BUIRIXT BuIOISIaA 1EMIJOS
Hodsuel jeuiapg eusaiu| 8jdnooa eusayu| 3|dnooay a|dnooa, “Buyjdnoos, Tl
% |ewaju] ajdnooaq Bl i 9| a B | 3| a B IdV 3| a Idv a
|020101d uoneoaidaq | ABarens suoisiop IdY v »wmw_“w"”m_gm Juswabeuepy L
spiem)oeg 3oayy |dV wawsa|dw) a|dnn wawsa|dw) Juowajdw UOISIaA
jJuawabeuely oAy | L
spuauodwo)
oL 6 L 9 S 14 € I L 0 sppAaT
Aumen

|97

Section 4.4 — The APl Management Focus Area Maturity Model

‘paNUnUOod ‘WINVH-W-IdV YL :9°% 21nS1]

Jawoisngy anjeA wa)sAg Juawabeuepy
0} suoneziwndo “M”h%_«wmo:ouw_wmwm ssauisng weiboid uonduosqng Ewﬁmwﬂcmﬁ €9
1s966ng AjaAnoeold 11duoSqNS spinoid IdY uo poday uswa|dwy W v
l9pon | |9pO uonez! |9PO UOIBZIIBUO _mwmm_z‘ﬂwwmﬂwmw:ws_ Aborens 29
paseg-buueia 1dopy wnjwaal{ 1dopy paseg-1a1] 1dopy paseg aoE..\ ans uolneznsuopw
V1S pazijeuosiad AjpAnoeold suawaalby -
aziwoisny V1S JoNuopy V1S spinoid V7S [eulojul ystiand |9A87-90IAI8S s
|eloJawwo)
swabeuepy .
SIdY 3|pun: Bojese; aplno. K19100s |qe
IdV a|pung |B1eD |dV dpiroid J3A0DSIQ |dY |qeul 11051104 EE
S1ueng 71UBBI0 leyod wnio4 20Udsald BIPBN swabebuy -
|dV 21e01paq J1adojanaq apinoid Anunwwog apinoid |e100S uleuRy Anunwwoy
sa|dwes buipnjouj uoneuaWN0q
S[eloIn| 08pIA d1eal) uoleluaWNo0Qq ELIEIETEN] uoneuswnooq | ‘€S
dn-pielg apirold 10} piepuelS 9sn
wea) sonss| |]auuey dd .
yoddng Jsadojareq Joddng abeuey uonedIUNWWOoY uoddng 2'S
ajealpeq ysiiqess3
JBWUOIIAUT 9|0su0Y |4V uonensibay Buipieoquo -
X0Ogpues apIAcId aAnoeIBIU| Juswa|dw| Hoddng %as spinoid Jsadojanaq ase: Jadojarag Ls
Aunwwo) | s
bt —ZN:(SH9| |9 w:onwm w_w\»_m:(snje; SEOPEO! S101J; oda, w0_~> eu .
APl 9lGeu3 19l 195 wotsng s1e19Ue9 18IS 1V 1seopeoig 3 Hoday jeuy €Y
sidwany sio113 6o -
Aunnoy sesn upny Aunnoy 6o ss000y 507 3 607 Buibbo A4
abesn @ouewIopad -
01n0saY JOUON v JoNUoN yeaH Idv JoHuo Bunoyuop L't
Aujigeatesqo | v

98| Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for API Management

Operational
Feasibility
Ease of Use
Usefulness
Effectiveness

Expert

API Evangelist
CEO4

CEOp

Engineer

IT Consultant
Product Manager
Lead Engineer 4
Lead Engineerpg

AW DA PADNDPPDODDW
W N W SADNDDADNDWNDN
g A U WWNs W DN DN
A WA O AW

Lead Engineerc

Average 3.4 2.8 3.9 3.8
Std. Dev. 0.68 0.62 0.74 0.63

Table 4.3: The rankings given by the experts in response to the questions corresponding to the
four evaluation criteria, as well as their averages and standard deviation.

Still the experts generally responded positively to the model, and expressed interest
in using it in practice to evaluate their organization’s API management related pro-
cesses and assess their API management maturity. For example, Product Manager
concluded the interview with the following remark: “I think this - the API-m-FAMM -
is a very thorough analysis. You have made a very nice overview that can help organi-
zations with deciding what and when they have to do if they start with an APIL If they
want to bring something to the market quickly, this helps them realize they must first
have implemented the processes on the lower levels, and have to start small. Actually, for
many organizations that already have an API or want to start building one, this is the
roadmap they should follow for a good API strategy.” The evaluation criteria as stated
earlier should be interpreted as how the expert thinks the final model will score. These
scores are no proof of the actual effectiveness or usefulness of the model, but an indi-
cation of how the model will be received by industry in the future. In this phase the
criteria are used as marketing research: how likely will the API-m-FAMM succeed in

industry.

4.5 Case Studies

The case studies, as described in Section 4.3, are evaluative in nature and are aimed
at determining to what degree the API-m-FAMM succeeds in aiding an organization in
evaluating and improving upon their API management related business processes in
practice. This corresponds with the Deploy phase of the design of the maturity model.
The API-m-FAMM is evaluated with an embedded case study at the company the first

Section 4.5 — Case Studies | 99

and second author are employed at, and through case studies at four different com-
panies. Data resulting from the application of the API-m-FAMM is collected through
an Excel spreadsheet. Finally, participants evaluated the API-m-FAMM on the same
criteria that were employed as part of the first evaluation cycle. These processes are
part of the case study protocol that is used in conducting the case studies.

The main objective of the case study is to determine to what degree the API-m-
FAMM succeeds in aiding an organization in evaluating and improving upon their
API management related business processes in practice. The selected organizations
were provided with a visual copy of the API-m-FAMM, as well as a copy of the source
document describing the focus areas, capabilities, and practices the model consists
of in detail. Considering that the API-m-FAMM was previously presented to selected
participants as part of the first evaluation cycle, they were already informed with
regards to the focus of this research as well as the purpose and structure of the API-
m-FAMM. After having familiarized themselves with the contents of the API-m-FAMM,
participants are asked to assess their maturity by filling out whether each practice has
either been or is:

+ Implemented: the practice has currently been implemented in the organization.

+ Implementable: the practice has not been implemented, but in theory is imple-
mentable. Depending on the organizations needs and plans, the practice will
either be implemented in the short-term, long-term, or not at all.

+ Not applicable: the practice has not been implemented, and is not applicable
as it will most likely never be implemented. This may be due to a number of rea-
sons. For example, the practice may not be of added value, or not desirable for
the organization to implement because it does not align with the organizations
goals, vision, or needs.

Lastly, participants are asked to fill out a short survey consisting of a series of ques-
tions that are similar to those that were asked as part of the expert interviews during
the first evaluation cycle. The main difference is that during the expert interviews, the
questions were phrased future tense due to the API-m-FAMM not being completed yet,
while during the case studies the questions were posed in past tense. The purpose of
these questions is for the participants of the case study to evaluate the API-m-FAMM
with regard to its operational feasibility, ease of use, usefulness, and effectiveness. These
questions are aimed at determining the degree to which the the API-m-FAMM has
succeeded in aiding the participating organization in evaluating and improving upon
their API management related business processes in practice.

For the embedded single-case study, the API-m-FAMM is applied to two software
products that are developed by AFAS Software. Within this case company, the API-
m-FAMM was deployed and evaluated with two development teams that are working
on two separate software products. Afterwards the evaluation was discussed with the
teams as well. We discuss these two products and the highlights from the assessment.

AFAS Software is a Dutch vendor of ERP software based in Leusden, the Nether-
lands. Additionally, AFAS has offices in Belgium and Curacao. The privately held
company currently employs over 500 people and generated 191 million of revenue
last year (2020).

100| Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for APl Management

AFAS Profit - AFAS’ main software product is Profit, which is an ERP package consist-
ing of different modules such as Fiscal, Financial, HRM, Logistics, Payroll, and CRM.
Currently, this product has over 2 million users across over 11.000 small, medium and
large organizations. AFAS Profit provides customers with two APIs: a REST API and
a SOAP API. Both of these APIs offer the same functionalities, and customers may de-
cide on using either of these depending on their preferences. These APIs are called
about 500 million times a month. Furthermore, standard connections with external
software products and applications that utilize these connectors, from organizations
with which AFAS is partnered, are offered through AFAS’ partner portal.

With regard to Lifecycle Management the interviewees have marked Implement Mul-
tiple API Versioning Strategy as not applicable. During the discussion they explained
that this is due to the fact that the version of the connectors is directly tied to the
version of the application itself. However, in the event of changes, the consumers had
to be notified and plan the required changes. In order to notify consumers of updates,
Profit publishes release notes describing general updates made to the product as well
as specific updates made to the connectors.

Only a few practices from the Commercial focus area have been implemented. Con-
sumers are to adhere to a SLA, which contains agreements on fair use, time-out poli-
cies, and uptime guarantees. Furthermore, no strategy for monetizing the APIs is
employed considering that this is already done indirectly through the product’s licens-
ing.

AFAS Focus - Currently, AFAS is developing a new version of its ERP software, which
is called Focus. This product shares nothing in terms of the technology and codebase
used with AFAS Profit, and is cloud-based as well as generated by using the ontological
model of an enterprise as input. Considering that since the time development first
commenced some modules such as Financial have been developed, AFAS is currently
in the process of transferring customers from the current Profit product to Focus. AFAS
Focus only supports REST APIs, which support both the XML and JSON data formats.
The endpoints are described using the OpenAPI specification and make use of the
OAuth application token flow for authentication. The current size and state of AFAS
Focus encompasses about twenty available endpoints, which are directed at a few
specific integrations. In the future this number will increase as Focus continues to
grow and branch out to more partners.

As AFAS Focus is not yet mature, a number of areas are not yet relevant. While
groundwork for Community is done, there is not yet a community that needs to be
supported. This also results in the underdevelopment of the Commercial area. The
number of customers do not yet pose strong demands on Performance, resulting in a
number of advanced practices not being implemented.

The remaining case studies are conducted with multiple organizations. These or-
ganizations were partly selected by contacting the experts that were previously inter-
viewed as part of the first evaluation cycle. Furthermore, other organizations were
selected through the utilization of the network of the authors. Please note that the
names of some of these organizations are anonymized. Explicit consent to include the
name of the organization was obtained from those that are not.

Section 4.5 — Case Studies | 101

ConsultComp - ConsultComp is a multinational professional services network, is
one of the Big Four accounting organisations, and is among the largest professional
services networks in the world by revenue and number of professionals. ConsultComp
provides audit, consulting, financial advisory, risk advisory, tax, and legal services with
over 300.000 professionals globally. Aside from these services, the organization also
develops software products for customers, which are developed in-house in their office
in the Netherlands. The team involved in developing these products utilizes internal
APIs, third-party service integrations to access data from service providers, and is also
in the process of starting to expose (partner) APIs to customers.

In the scope of the Lifecycle Management focus area, the internal API is versioned
using the evolutionary versioning strategy. Considering that the organization’s API is
exclusively used internally, practices corresponding to Update Notification are not im-
plemented. Noticeably, a large part of the practices corresponding to the Security focus
area have been implemented. In order to authenticate internal consumers of the API,
an authentication protocol along with the SSO method is used. Furthermore, all prac-
tices belonging to Threat Detection & Protection and Encryption have been implemented
to further secure the product. Virtually all practices belonging to the Community and
Commercial focus areas have been marked as not implemented or not applicable. Sim-
ilarly to capabilities such as Update Notification and parts of the Traffic Management
and Analytics, this is logical considering that in the current case of an internal API,
there simply is no community surrounding it to manage as of yet.

Exact - Exact is a multinational organization that provides ERP software and was
founded in the Netherlands. Apart from their headquarters in the Dutch city Delft,
Exact also has offices in 20 other countries, and currently employs over 1850 people
and annually generates 209 million of revenue. Exact provides customers with var-
ious products, such as an integrated ERP package, and a package that incorporates
modules that are targeted towards CRM, HRM, and workflow management. Exact’s
main software product that is offered in the Netherlands and Belgium is called Ex-
act Online, which is a package consisting of modules such as accountancy, CRM, and
project management. This SaaS product currently has over 500.000 users and is fully
internet-based. Exact Online provides customers with two main API types: a REST API
and an XML API. These APIs comprise a range of endpoints that combined are called
about 700 million times a month.

All practices belonging to the Lifecycle Management focus area have been marked as
Implemented. Both versioning strategies are marked as implemented, as well as the
deprecation protocol and backward compatibility checking practices. The product is
also mature with regard to update notification, with the exception of announcing an
API versioning schedule. Similarly, most practices in the Security focus area have been
marked as implemented, including conducting security reviews: over the course of
the past few years, Exact has conducted security audits at 2000 organizations. Fur-
thermore, Exact’s Zero Trust Network Architecture is implemented through a third
party platform. Consumers of Exact Online are provided with an extensive SLA, which
contains elements such as uptime guarantees, fair use policies, and agreements on
rate and data limiting. Furthermore, while access to the product as a whole is mon-
etized through monthly licensing fees, no monetization model that specifically and

102 | Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for APl Management

exclusively applies to the APIs is used.

Uber - Uber is a large-scale multinational technology organization that was founded
in the United States. It provides multiple services, such as ride-hailing, food delivery
(Uber Eats), and package delivery. Uber is estimated to have over 93 million monthly
active users worldwide. In 2012, Uber established its international headquarters in
Amsterdam, the Netherlands. Here, among other things, development teams are re-
sponsible for optimizing the performance and scalability of the public API that is pro-
vided by the organization, as well as developing new functionalities.

In terms of the Lifecycle Management focus area, nearly all practices have been imple-
mented. The organization is able to version their APIs using the evolutionary strategy,
as well as the multiple API versioning strategy. To this end, Uber also has a deprecation
protocol and backward compatibility checking methods in place. Furthermore, mecha-
nisms to provide consumers with information regarding updates to the API are in place,
with the announce versioning schedule practice being planned for implementation in
the foreseeable future. Most practices have been implemented for the Performance
focus area. Considering that Uber is a large-scale multinational organization, this is
to be expected. Regarding Resource Management, the organization has implemented
advanced scaling methods, considering that automatic scaling takes place when cer-
tain resource thresholds are exceeded. Furthermore, Uber has runbooks in place that
detail what course of action should be taken when the scaling strategy fails. Addi-
tionally, considering that the organization has various data centers that are located in
different continents and countries, there are failover policies in place which allow the
organization to mitigate outages.

The overall results of the case studies are presented in Table 4.4, showing the num-
ber of practices that are implemented for each capability. Consequently, this means that
the other implementation categories (implementable, and not applicable) are not taken
into account in this overview. Furthermore, before discussing these results, it should
be noted that the percentages representing the average amount of practices that are
implemented in each focus area should be interpreted in an indicative manner, as some
practices may encompass a much larger amount of work than others. Moreover, some
case companies vary heavily in terms of their vision, size, usage of APIs, and goals. For
example: Uber, AFAS Profit and Exact may be roughly classified as large and mature
organizations that have been exposing public or partner APIs for a long period of time,
which is reflected by the observation that these organizations have implemented the
majority of practices for most focus areas. ConsultComp is also a large organization
in size, but the product that was evaluated has only been utilizing internal APIs for a
short period of time. Hence, some focus areas are largely irrelevant within the scope
of this product. Similarly, the AFAS Focus product has been utilizing partner APIs for a
relatively short period of time and is currently in the process of expanding the services
it provides as well as the assets it exposes. Due to the current scale of the product and
the stage of development it is in, some practices are currently not yet necessary to be
implemented.

First, it was observed that some practices are mutually exclusive. This phenomenon
may be observed in the Authentication capability, where in some cases the Implement

1103

Section 4.5 — Case Studies

*SISYIO UBT]] SAISUDIXD 210U Ik saonoerd
SuwIoS pue ‘paly3rom 1ou a1k sadnoeld S S TeUURW SAIBIIPUT Uk Ul pajaidiaiur aq pinoys sadeiusdtad asat) 1B} 910U Sk ‘BaIe SNd0J 9yl
01 pausisse a1e Jeyl sao13orid Jo JUNOWE [€303 Y3 JO INO pIjuswa(dw uaaq ARy Jey) saonoeld Jo aIeys a3 21edrpur sodejusdiad oy, "'UMOYS SI
soonoeld pajuswsduir jo Junoure 3y} Kifiqeded yoes 104 ‘satueduiod ased 9yl 18 NIAVH-W-IdV Y3 Jo JuswAo[dap a3 Jo SI[Nsal 3yl ' 9[qel

0C'1 7’1 4 C 0 € 0 JUSUWIOSRURIA JUNODY €9
00 00 0 0 0 0 0 A391e11S UONRZIIQUOIN T'9
0S'T 91 14 4 0 4 0 SJUSUIRRIZY [9AT-DIAIRS [°Q
%ST %08 %EE %0 %cCy %0 [erPWwo) 9

9¢'1T 91 € 4 0 € 0 JuowRSeURA OI[OJI0d GG
¥¢'e 9¢C € S 0 S 0 Jjuswededuy Aunwuwo) G
¢0'T 9’1 4 € 0 4 T uopeyudWNIOg €°§
080 i € € 1 € 4 uoddng 7'
91 0'C € 1% 0 1 4 BurpreoquQ 1adoeasg 1°S
%LS %8L %t6 %9 %8L %8¢ Aunwwo) S

0’1 9T € 4 I 4 € sondeuy ¢p
(0140 8¢ ¥ 14 ¥ € ¥ 3uid8o1 7Y
o0 8'C € € € € 4 SuuoyuolN Tt
%LL %€ES %26 %L9 %L9 %SL A1qea1ssqo v

98’1l '€ 9 S € 4 1 JuowaSeURA OIJRIL T'S
0¥’0 8'C € 4 € [[JUOUWIOZBUBIA 92In0say ['E
%9S %T8 %¥9 %SS %Sy %9¢€ ouRULIO)Id €

0t°0 81T (4 T C 4 4 uonddpuyg g
0c't 'S 9 9 9 9 [UoMmd910Id B UONIAIR(B3I, €T
86°0 9'C 14 14 4 4 4 uonezoyMy g'g
SL°0 8’1 € 4 4 T T uonednUAYINY ['C
%6L %001 %L8 %08 %EL %ES £1ndag 4

LT 81 € € 0 C 1 uonedynoN arepdn €1
080 '€ € 14 14 4 1% uonedddy R [dv Sundnooag 7'
0C'T 9C 14 14 1 4 4 JuswageURN UOISISA T'T
%S9 %€E8 %C6 %CY %08 %8S JuRWIRZBURIA S[2A9JTT 1

ASPIS Say 13N dunuO Pexy dwoHnsuoy) IYoid SVAV ~ SNO0q SVAV BAIY SNO04

104 | Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for APl Management

Basic Authentication has been marked as not applicable when the Implement Authenti-
cation Protocol had been marked as implemented. This is indeed a logical result, con-
sidering that only one method of authentication is necessary. Similarly, such choices
are also observed between the Implement Interactive API Console and Provide Sandbox
Environment Support practices.

Secondly, it may be observed that the mature organizations (Uber, Exact and AFAS
Profit) as a whole have implemented the majority of practices across most focus areas.
This is particularly the case for Lifecycle Management, Security, Performance, Obsery-
ability and Community. However, the AFAS Profit product forms an exception to this
observation, considering the relatively high number of practices that are not applicable
and implementable. The practitioners noted that practices that have been marked as
such have been discussed internally in the past, and were concluded to not be desir-
able to be implemented due to them not aligning with the prevalent vision and goal
of the product.

Thirdly, we observe that within the earlier mentioned focus areas, some practices on
the higher end in terms of maturity are often not implemented across the board, such
as Announce Versioning Roadmap, Implement Predictive Scaling, and Prioritize Traffic.
This is supportive evidence for these practices having high maturity levels. Further-
more, in most cases such practices were marked as implementable, signalling that or-
ganizations that have done so are interested in implementing these practices in the
future. It should be noted however, that the time-span in which organizations plan on
implementing such practices may vary greatly.

Lastly, a common trend that may be observed across all organizations is that the
Commercial focus area is underdeveloped. In particular, this is the case for the Mone-
tization Strategy capability, considering that no organization has marked any of these
practices as implemented. However, the practitioners at Exact have expressed interest
in implementing a monetization strategy in the future. Specifically, the practitioner at
Exact mentioned that he expects that monetization for APIs will become increasingly
more common in the future, and that he suspects that large-scale organizations that
expose high-traffic public APIs already monetize their APIs. However, no concrete
evidence of this has been found as part of this case study and its participants.

The practitioners experienced the usage of the API-m-FAMM in a positive manner.
As can be seen in Table 4.5, the ease of use, usefulness, and effectiveness, were all ranked
with an average score of 4 or higher. This supports the usefulness and effectiveness
of the API-m-FAMM in achieving its goal of aiding organizations in assessing their cur-
rent maturity in API management and guiding them towards achieving higher levels of
maturity. However, the average score attributed to the API-m-FAMM'’s operational fea-
sibility is notably lower when compared to the other criteria. In particular, the scores
given by practitioners corresponding to the AFAS Focus and Profit products are among
the lowest. This may be explained by the fact that the AFAS Profit product is almost
fully matured and developed, which reduces the incentive among its practitioners to
repeatedly consult the API-m-FAMM for guidance. This is further compounded due
to the practitioners already being aware of most practices that have not yet been im-
plemented, as well as having previously discussed them internally in the past. For the
case of AFAS Focus, this may be explained by the observation that a large portion of fo-

Section 4.6 — Discussion | 105

«
K Q *)
§& 5 & 5
= =R =] >
8 © = =]
5% o £ 9
25 2 2 &
Product or = =] =
AFAS Profit 2 4 4 3.5
AFAS Focus 2 3 4 3
ConsultComp 4 4 3 4
Exact Online 4 5 5 4
Uber 3 4 4 5
Average 3.2 4.0 4.0 3.9
Std. Dev. 0.89 0.63 0.63 0.6
Expert Interviews Average 34 28 39 38
Expert Interviews Std. Dev. 0.68 062 0.74 0.63

Table 4.5: The rankings given by the case companies’ practitioners in response to the questions
corresponding to the four evaluation criteria as well as their averages. Included are the average
and standard deviation from Table 4.3 for reference.

cus areas and capabilities are irrelevant for the product given its current development
stage, which in turn reduces the effectiveness of the API-m-FAMM in this case.

Interestingly, the API-m-FAMM was ranked fairly high by ConsultComp’s practi-
tioner, regardless of the fact that, similarly to the AFAS Focus product, some focus
areas and capabilities do not apply to the product given its utilization of internal APIs.
However, ConsultComp’s intent of developing partner APIs in the future may provide
an explanation for the practitioner’s appreciation of the API-m-FAMM. Regarding the
average score given to the operational feasibility criterion (Table 4.5), the researchers
suspect that this is on the low end due to a lack of incentive for practitioners to re-use
the API-m-FAMM after the initial assessment.

4.6 Discussion

The API-m-FAMM has shown to be an effective tool to measure and assess the maturity
of an organization with regard to API management. The case studies’ participants rank
the model with an average of 4 out of 5 for ease of use, usefulness, and effectiveness.
In comparison with the ranking of the experts, made during the interviews, only opera-
tional feasibility is ranked lower with a 3.2 out of 5 (shown in Table 4.5). This last one
is explainable, as two out of five participants remarked that there is no added value
of a continuous evaluation with the API-m-FAMM. The rankings given by the experts
during the development of the model were a bit lower for usefulness and effectiveness,
while being more than a point lower for ease of use. This last criterion is important
for the general adaption of the API-m-FAMM and maturity models in general.

Experts occasionally suggested during interviews that they are of the opinion that a
bigger range of practitioners could be reached if the accessibility of the API-m-FAMM

106 | Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for APl Management

as a tool would be improved. One way in which this could be achieved, is by de-
veloping a web-app through which practitioners may easily navigate, as well as read
focus area, capability, and practice descriptions, and then mark which practices are
or are not implemented within their organization. In doing so, the Excel spread-
sheet and source document that were used as part of the case studies could be com-
bined into a single easily usable tool. Currently, the API-m-FAMM is maintained on
maturitymodels.org. While this website offers a visual alternative to the source doc-
ument considering that descriptions are included, it does suffer from some limitations.
Most notably practitioners are unable to use the website to perform an evaluation
and denote whether practices have been implemented. Therefore, we published a
do-it-yourself kit that was used during the case studies. Improving this would allow
practitioners to share the current as-is situation of their organization’s API manage-
ment maturity with management and stakeholders. These results could be used as a
benchmark for other practitioners through an opt-in consent. The opportunity for im-
proved visualization of results extracted from FAMMSs was also previously identified by
Spruit & Roling [233]. In this work, it is suggested that effective result visualization
may be accomplished through spider charts, since most managers are familiar with
such a type of representation.

Another opportunity lies in the potential to customize and adapt the API-m-FAMM
depending on certain organizational characteristics and goals. For example, the case
studies have shown that certain focus areas are irrelevant for organizations that exclu-
sively utilize internal APIs. For instance, this is visible in the results corresponding to
the Community and Commercial focus areas (Table 4.4). The organizations that scored
less on these areas stated that these areas are of less importance for them, because the
APIs are either targeted at internal users or the software platform itself is not yet ma-
ture enough. The area Performance also shows a wide range of results, indicating that
the assessed platforms operate in different contexts. Such information could be pre-
emptively collected through a checklist or survey, based on which the contents of the
API-m-FAMM may be adapted. Other information that could be used to perform this
adaptation may include characteristics such as the size of the organization, whether a
third-party API management platform is used, or what type of product or services the
organization provides.

The aforementioned opportunity for customization and adaptation of FAMMSs can be
linked to a general limitation of maturity models that has been identified in previously
conducted research. In their work, Proenca & Borbinha [198] argue that "maturity
assessments can be used to measure the current maturity level of a certain aspect of an
organization in a meaningful way, enabling stakeholders to clearly identify strengths and
improvement points, and accordingly prioritize what to do in order to reach higher ma-
turity levels". However, as a prerequisite to performing such a maturity assessment,
evidence needs to be manually collected to substantiate the maturity level calculation,
which makes maturity assessment an expensive and burdensome activity for organiza-
tions to perform. Hence, Proenga & Borbinha [198] argue that future research should
focus on developing methods and techniques to automate maturity assessment. The
researchers second this observation: even though the maturity assessments that were
done as part of the case studies were performed with minimal intervention from the
researcher, there are opportunities for automation, customization, and adaptation of

maturitymodels.org

Section 4.7 — Focus Area Maturity Models | 107

maturity models and FAMMs to reduce the amount of effort needed to perform matu-
rity assessments and provide tailor-made advice for maturity improvement. Moreover,
the researchers hypothesize that the aforementioned opportunities for automation,
customization, and adaptation could be key in creating incentives for practitioners to
re-use maturity models and FAMMs over a longer period of time. We consider the ma-
turity model’s low degree of re-usability to be a point of concern due to our findings
as part of the case study, which have shown that practitioners are relatively unlikely
to revisit the API-m-FAMM to track their progress over a longer period of time.

The researchers are of the opinion that useful insights could be gained by conduct-
ing research into the differences in terms of advantages and disadvantages that occur
with regards to API management for organizations that actively utilize third-party,
commercial platforms to manage their APIs when compared to those who do not. This
suspicion is supported by the observation that currently, the largest part of available
(grey) literature on the topic of API management is either written by authors that are
either directly or indirectly affiliated to commercial management platform providers.
Examples of such authors include Weir [266] (director at Oracle) and De [53] (for-
mer Apigee consultant). This literature is, more often than not, exclusively focused on
the benefits that organizations attain as a result of using API management platforms.
However, when asked, some experts that were interviewed during the evaluation cy-
cles noted that their organization does not use a management platform and does not
wish to do so. For future work, it should be investigated whether significant differ-
ences exist in terms of API management maturity between organizations that do use
commercial platforms and those that do not.

4.7 Focus Area Maturity Models

Throughout this work, the design, population, evaluation, and deployment of a fo-
cus area maturity model targeted towards the topic of API management has been
described. Aside from the main practical contributions the API-m-FAMM offers organi-
zations in maturing their API management practices, this work also provides various
scientific contributions in the field of focus area maturity models.

This work provides researchers that seek to develop a focus area maturity model
for a different functional domain with an improved description of the existing frame-
work on how to do so. Publications on the development of FAMMs such as that of
Jansen [125] and Spruit & Roéling [233] offer a high-level overview of this process,
which adhere to the FAMM meta-model presented by Steenbergen et al. [236] and
De Bruin et al. [54]’s methodology for developing maturity models. The accompany-
ing source data of this article discusses the intermediate versions of the API-m-FAMM
and the changes between them in detail [159]. The steps that this methodology con-
sists of were also followed in this work: conducting an SLR, population, evaluation
through expert interviews, and deployment as part of case studies. The added details
contribute towards alleviating concerns mentioned by Jansen [125]: “Interestingly
enough, while there is a rapid increase of publications of new maturity models, there is
little literature that particularly discusses the development of maturity models”. Further-
more, work conducted by Proenca & Borbinha [198] on the state of the art of maturity

108 | Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for APl Management

models has found that one of the main limitations to maturity models is that there is
a general “lack of information regarding the maturity model development method”. This
article could form an exemplar for other works describing FAMMs.

Because the underlying thought process and specific design choices that were made
in developing other maturity models and FAMMs in particular were also largely inac-
cessible and unknown to the researchers, some novel approaches were used and de-
scribed throughout this work. A card sorting technique was used and described, which
uses digital tools to rank and assign practices to maturity levels. Additionally, the way
these exercises were interpreted and the manner in which practices were ultimately
assigned to maturity levels is elaborated upon. Another novel approach includes the
utilization of criteria used for Design Science Research (DSR) artifact evaluation in-
troduced by Prat, Comyn-Wattiau & Akoka [197] to evaluate the API-m-FAMM’s use-
fulness, completeness, ease of use, effectiveness, and operational feasibility. Doing
so has shown that using these criteria is an adequate strategy for evaluating FAMMSs
during expert interviews or through surveys. In this work, the criteria were used to
gather feedback and foster discussion with experts as well as among the researchers
themselves, in order to subsequently guide further improvements to the API-m-FAMM.
While in this case the criteria evaluation was conducted during the first evaluation
cycle and as part of the case studies, the criteria could also be used to evaluate a
prototype version of a FAMM to gauge interest among practitioners, or as part of the
second evaluation cycle.

This work has shown that De Bruin et al. [54]’s methodology for maturity model
development may be incorporated with DSR, by using it to construct a design science
artifact during the solution design phase. Furthermore, this study demonstrates which
techniques and tools may be utilized during the test phase of De Bruin et al. [54]’s
methodology. This includes some of the approaches listed above, such as usage of Prat,
Comyn-Wattiau & Akoka [197]’s evaluation criteria, conducting multiple evaluation
cycles through expert interviews to evaluate the maturity model, as well as the usage
of Nielsen [175]’s card sorting technique to perform maturity level assignments. As
such, this work provides researchers that utilize De Bruin et al. [54]’s methodology
and are involved with maturity model development with suggestions for the usage
of novel approaches so that they may incorporate them in the testing phase of their
maturity models.

Furthermore, the API-m-FAMM was successfully deployed in practice with minimal
involvement of the researchers. As is described in Section 4.5, practitioners were pro-
vided with the API-m-FAMM, along with a set of instructions and a spreadsheet that
was used to denote which practices had been implemented in the case company®. To
the best of the researchers’ knowledge, this study is the first among work that has previ-
ously been done with regard to the design of FAMMSs where practitioners are enabled
to self-assess their organization’s maturity in a functional domain such as API man-
agement. In comparison, Jansen [125]’s SEG- M2 and Spruit & Roling [233]’s ISFAM
were deployed in practice by gathering input through in-person collaboration between
the practitioners and the researchers themselves, as well as desk studies. Moreover,

3These instructions and spreadsheet are available through the do-it-yourself kit, published on https:
//www.movereem.nl/api-m-famm.html.

https://www.movereem.nl/api-m-famm.html
https://www.movereem.nl/api-m-famm.html

Section 4.8 — Threats to Validity | 109

as is discussed in Section 4.5 and shown in Table 4.5, the majority of practitioners’
experience with using the API-m-FAMM was positive, considering that its ease of use,
usefulness, and effectiveness was ranked with a score of 4 out of 5 on average.

4.8 Threats to Validity

Like all empirical research, this work is vulnerable to threats to validity. In this sec-
tion we discuss four categories of validity: construct validity, internal validity, external
validity, and reliability [4, 212].

Construct validity refers to the degree to which this study actually measures what
it is intended to. The API-m-FAMM sets out to evaluate the maturity of organizations
with respect to APl management practices. In order for this model to be successful
and actually measure what we intended to, we need to trust in the application of focus
area maturity models in general and the content of the API-m-FAMM specifically. This
threat was mitigated through a number of actions. First, the SLR that was conducted
as a means of initially populating the first versions of the API-m-FAMM adhered to
several constraints. This includes a search string that was constructed through snow-
balling in an iterative manner. Furthermore, multiple databases were searched and
strict inclusion and exclusion criteria were adhered to as to mitigate study inclusion
and exclusion bias. Publication bias was further mitigated as a result of the inclu-
sion of grey literature. Additionally, multiple discussion sessions were held among the
authors at various stages of the population process in order to mitigate data extrac-
tion bias and researcher bias [4]. Moreover, construct validity is mitigated through
this work’s adherence to design science research (DSR) guidelines and De Bruin et al.
[54]’s methodology for developing maturity models. Lastly, the robustness of the ini-
tial classification that was used by De [53] was ensured by evaluating this decision
through multiple expert interviews. Through these actions the API-m-FAMM builds on
existing and proven research from SLRs, expert interviews, and maturity models.

Internal validity is concerned with the extent to which there is evidence that the
artifact makes a difference in terms of cause and effect in the context of this study. The
API-m-FAMM is intended to achieve both a realistic maturity evaluation as well as an
actionable path for improvement. In order to investigate whether the model is able to
achieve its intended goal, which is to assist organizations in assessing and evaluating
their degree of maturity in API management in order to improve upon their API man-
agement related processes, the researchers suspect that multiple desk studies that last
substantial periods of time (multiple years) should be conducted. However, verifying
the implementation of practices contained in the API-m-FAMM through desk studies
is largely infeasible since practices are often placed on long-term roadmaps that are
susceptible to change, reducing the chance of actually observing the implementation
of such practices during the desk study. Instead, the effects of the API-m-FAMM were
investigated through evaluation during the experts’ interviews (Table 4.3) and case
studies (Table 4.5). Considering the difference and increase in terms of the scores that
were assigned to these criteria by practitioners when comparing the first and second
versions of the API-m-FAMM, in addition to the positive results and feedback received
as a result of the case studies, we believe that the model is able to achieve its intended

110| Chapter 4 — API-m-FAMM: a Focus Area Maturity Model for APl Management

goal. In addition to this long-term goal, short-term benefits may also be attained by us-
ing the API-m-FAMM due to practitioners being able to immediately identify practices
that are not currently implemented.

External validity revolves around the degree to which the results of this study may
be generalized and applied to other contexts and situations. We conducted five case
studies at four different companies. Based on these studies it is hard to claim that
the API-m-FAMM will add value to all companies that expose public APIs. Although
we are inclined to believe that our API-m-FAMM is an effective tool, based on the re-
sults presented, more studies need to be conducted over a longer time period. We
do believe that the research design enables us to deploy the API-m-FAMM in a wide
range of organizations. The API-m-FAMM is mainly targeted towards organizations
that expose one or multiple public or partner APIs. However, two experts that are
employed at organizations that currently exclusively utilize a set of internal APIs were
involved in the first evaluation cycle. Considering that these experts expressed that
focus areas such as Security, Observability, Performance and, to a lesser extent, some
capabilities belonging to the Lifecycle focus area, are relevant and applicable to them,
we suspect that the API-m-FAMM is also useful to such organizations. This is further
supported by the results of the case study conducted at ConsultComp. Organizations
of varying sizes and backgrounds were involved in the evaluation cycles and case stud-
ies. While some experts that are employed at large organizations noted that most
practices have already been implemented at their organization, they also commented
that some practices that are assigned to high maturity levels have not yet been im-
plemented. Furthermore, experts working for small organizations indicated that the
API-m-FAMM could be a useful tool for them to use as a road map or checklist to use
in discussions with management and stakeholders so that future implementation of
practices that are currently not implemented may be discussed and planned. Addi-
tionally, due to the decision to exclude practices that are solely tied to the usage of
API management platforms, the API-m-FAMM is generalizable to both organizations
that do not use such platforms, and those that do not. However, as this was not the
case with organizations involved in the evaluation cycles and case studies, more case
studies should be conducted with organizations that heavily utilize API management
platforms to fully determine whether this exclusion in terms of scoping has negatively
impacted the usability of the API-m-FAMM for such organizations.

The reliability aspect is concerned with the extent to which the data and analyses
that were conducted as part of this study are dependent on the specific researchers. A
large part of the construction of the API-m-FAMM is the result of discussions among
the authors. After every phase, as visualized in Figure 4.2, we integrated the new
knowledge into the API-m-FAMM through discussions supported by the card sorting
technique. However, we designed the research to be as transparent as possible, and
published all intermediate versions and source data. Due to adherence to DSR guide-
lines, the use of De Bruin et al. [54]’s methodology, and the SLR, some degree of
researcher bias has been mitigated. Furthermore, the protocols that were used for
experts interviews and case studies are included and were reviewed through peer
reviewing among all involved researchers. Additionally, all design decisions and pro-
cesses that resulted in the increments of the API-m-FAMM are extensively documented,
along with separate source documents detailing each major version of the model.

Section 4.9 — Conclusion | 111

Another threat to reliability is that, considering the maturity level assignments de-
scribed in Section 4.3 were partially done in a pragmatic and subjective matter, they
may result in a different outcome if replicated. This is due to the fact that the experts
that ranked practices as part of the maturity ranking exercises each have varying back-
grounds, experiences, and are employed at organizations with different characteristics.
However, this threat was mitigated by using the average of these maturity assessments,
as well as analyzing and cross-evaluating focus areas and maturity assignments during
the second evaluation cycle. Furthermore, the deployment of the API-m-FAMM as part
of the case studies has not produced any criticism among practitioners regarding the
maturity levels that practices are assigned to.

4.9 Conclusion

Throughout this work, the design, population, evaluation, and deployment of a fo-
cus area maturity model targeted towards the topic of API management has been
described. The goal of this model as well as this work in general was to improve the
transparency and availability of API management assessment frameworks and tools
by constructing, evaluating and validating a publicly available, industry and academi-
cally grounded framework or tool that can be used by organizations that expose their
API(s) to third-party developers to assess and evaluate their degree of maturity with
regards to API management in order to improve upon their API management-related
business processes. By constructing, evaluating, and publishing the API-m-FAMM we
answered the research question posed in Section 4.3: How can organizations that ex-
pose their APIs to third parties evaluate their API management practices?. Aside from the
main practical contributions the API-m-FAMM offers organizations in maturing their
API management practices, this work provides the following scientific contributions.
Firstly, this work offers researchers a previously undefined framework that captures
the topics and processes API management consists of. By decoupling API manage-
ment processes and topics from commercial platforms, the API-m-FAMM offers the
academic community a de-commercialized overview of the topic that was developed
by using insights from both literature as well as the industry. Secondly, this work pro-
vides a detailed description of the construction of a focus area maturity model through
the published source data [159], which researchers can use as an example in future
work. Third, this work has shown that De Bruin et al. [54]’s methodology for maturity
model development may be incorporated with DSR, utilizing Nielsen [175]’s card sort-
ing technique to perform maturity level assignments, conducting multiple evaluation
cycles, and utilizing criteria for DSR artifact evaluation introduced by Prat, Comyn-
Wattiau & Akoka [197]. Lastly, The API-m-FAMM was successfully deployed in prac-
tice with minimal involvement of the researchers using the constructed do-it-yourself
kit. This shows that we as researchers can make maturity models more relevant for
industry by investing in the usability of these assessment and improvement tools.

Data Packages: Systematic Literature
Review and Source Data

We describe a Systematic Literature Review (SLR) that has the goal of collecting API
Management practices and capabilities related to API Management, as well as propos-
ing a comprehensive definition of the topic. In the scope of this work, a practice is
defined as any practice that has the express goal to improve, encourage and manage
the usage of APIs. Capabilities are defined as the ability to achieve a certain goal
related to API Management, through the execution of two or more interrelated prac-
tices. A standard method for SLRs in software engineering is followed, through which
we collected 24 unique definitions for the topic, 114 practices and 39 capabilities. A
detailed description and the results are made available [158].

The collected practices and capabilities were categorized into six focus areas. Next,
the practices and capabilities were analyzed and verified through inter-rater agree-
ment and four validation sessions with all involved researchers. Then, the collection
of practices and capabilities was verified by using information gathered from supple-
mental literature, online blog posts, websites, commercial API management platform
documentation and third-party tooling. As a result, the initial body of practices and ca-
pabilities was narrowed down to 87 practices and 23 capabilities. These practices are
described by a practice code, name, description, conditions for implementation, the
role responsible for the practice, and the associated literature in which the practice
was originally identified. Capabilities and focus areas are described by a code, descrip-
tion and, optionally, the associated literature in which it was originally identified. The
complete data set is made available [159].

API Management Maturity of LCDPs

Low-code development platforms are environments that enable citizen developers
without software engineering knowledge to create software products. These soft-
ware products range from small business applications to large business platforms,
around which software ecosystems increasingly form. In these software ecosys-
tems, different organizations want to extend the created software products with
services and software, with the goal of creating active enterprise networks that
create value collaboratively. Well designed and maintained application program-
ming interfaces are crucial for these organizations.

In this paper we evaluate the application programming interface management
maturity of four low-code development platforms. We show that these plat-
form providers are not yet concerned with helping their customers build software
ecosystems around the software platforms that citizen developers create. Further-
more, we identify the software engineering research challenges that these plat-
form providers face. For instance, low-code development platforms should create
abstractions that let citizen developers design, develop, and manage application
programming interfaces. If low-code development platform providers follow our
advice and act on it, they will become able to provide customers with complete
ecosystem-enabled platforms instead of providing only simple throwaway business
applications.

This work was originally published in Enterprise, Business-Process and Information Systems
Modeling. BPMDS 2021, EMMSAD 2021. Lecture Notes in Business Information Processing, vol
421. Springer; Cham., titled API Management Maturity of Low-Code Development Platforms’. It
was co-authored by Max Mathijssen and Slinger Jansen.

116 | Chapter 5 — APl Management Maturity of LCDPs

5.1 Introduction

Increasingly, traditional Software Producing Organizations, i.e., organizations whose
main activities include the production of software, such as software vendors and open
source organizations, are discovering platforms as a vehicle to increase the value of
their software for their customers through collaboration with third parties. This trans-
formation from a product towards a platform is called ‘platformization’ [193]. Plat-
forms are a vehicle for software ecosystems and are defined as a set of organizations
collaboratively serving a market for software and services [126]. These ecosystems
form around software platforms, which in turn are managed by software platform
orchestrators.

We find that not all software products can easily transform into software platforms.
One particular category of software products are products that are created using no-
code/low-code development platforms (LCDPs). LCDPs apply model-driven develop-
ment to raise the abstraction level of software development, increasing productivity
and decreasing complexity as a result [28]. They target a wide variety of users, from
professional software developers to non-technical business experts [182]. The latter
category is commonly referred to as the ‘citizen developer’: people without software
development education who nonetheless build software applications. Customers of
these LCDPs utilize these platforms to increase their agility, it enables them to develop
business applications more efficiently without suffering from the lack of profession-
ally trained software developers. While LCDPs are traditionally used to create agile
business software applications, they are increasingly becoming part of the core IT
landscape [219]. As long as the LCDPs prove their value, customer companies will
utilize them in more and more diverse projects. The customer companies will be in-
terested in evolving their application into a platform to enable complementors, which
are organizations that build applications that extend the core system, to create more
value [126].

Evolving into an ecosystem is done by offering parts of the developed application
through Application Programming Interfaces (APIs). Research shows that concerns
such as stability, security, and scalability in ecosystems are related to API management
capabilities [6]. API management is the activity that enables organizations to design,
publish, and deploy their APIs for (external) developers to consume. This is one of the
enabling practices for the creation of an ecosystem. Traditionally the activities within
API management are executed by technical staff members. The strength of LCDPs,
however, is that activities that used to be executed by highly technical staff, such as
software engineers, are now executed by citizen developers. To support these API
management activities LCDPs have to provide the means to the citizen developers to
integrate applications developed on the LCDP with other applications.

We believe that LCDP providers must mature their API management capabilities to
remain relevant for citizen developers. After all, software ecosystems are increasingly
seen as the way to remain strategically relevant in the software industry [125]. In this
paper, we distinguish between two software ecosystems that form around LCDPs. First,
the LCDP ecosystem is the ecosystem that forms around the LCDP and the provider of
the platform. The second is the LCDP Application Ecosystem, which forms around the

Section 5.2 — Research Method | 117

application that is created by one of the customers of the LCDP. Our contribution is
an evaluation of the maturity of API management capabilities support among LCDPs,
along with a set of challenges that we identify. We evaluate the capabilities of four
LCDPs through descriptive case studies. In these case studies we measure the maturity
of their API management capabilities through a Focus Area Maturity Model (FAMM). A
FAMM is a model that groups capabilities and practices in focus areas and aligns them
with maturity levels, which can be used to evaluate organizational practices around
particular focus areas [25, 125].

Section 5.2 describes our research method and gives a short description of the four
LCDP providers investigated in our evaluating case studies. The API management
FAMM (API-m-FAMM) is described in Section 5.3. In Section 5.4 we evaluate the
LCDPs to uncover their level of support for a citizen developer in API management
activities. The results of the case studies are analyzed in Section 5.5. We contribute
a set of engineering research challenges for software engineering researchers in Sec-
tion 5.6. Threats to validity are discussed in Section 5.7. In Section 5.8 we observe,
through the four case studies, that some LCDPs are slowly maturing their API man-
agement capabilities while others do not act on these opportunities. Furthermore, we
observe that the API-m-FAMM, while mostly aimed at organizations with a proprietary
API infrastructure, is also applicable to LCDPs. Finally, we conclude that these plat-
form providers need to increase the level of abstraction of the technical complexity of
managing APIs, without losing the strategic strengths of it.

5.2 Research Method

Our research focuses on the question: How mature are the API management capabilities
that LCDPs offer? We use an established framework for evaluation of API management
maturity, to evaluate how well applications, created with four LCDPs, enable API ca-
pabilities for the LCDP customer.

In our research we apply a FAMM to measure the maturity of API management in
LCDPs. The API-m-FAMM [159] captures API management in 81 practices, grouped
in 20 capabilities, which are in turn assigned to six focus areas. The model is intended
for organizations that develop their own proprietary API infrastructure. However, in
our case studies we evaluate the LCDPs to uncover how they support the API manage-
ment activities of their customers. We apply a maturity model to measure the current
state and provide a roadmap to advance this state, similar to the work of Feijter et
al. [79]. Please note that more details are provided on the API-m-FAMM in the next
section.

The evaluations are performed in four descriptive case studies, which were con-
ducted with the ACM SIG Empirical Research standard in mind [204]. To be able
to extrapolate our findings we selected platforms that represent the current state of
LCDPs. Our selection was made based on the Quadrant for Enterprise LCDPs of the
advisory company Gartner [256]. This report surveys 18 platforms and categorizes
them into leaders, visionaries, challengers, and niche players. We selected two leaders
and two visionaries that were willing to cooperate in our evaluation. From Gartner’s
report we can conclude that leaders and visionaries will show the state of the art in

118 | Chapter 5 — APl Management Maturity of LCDPs

Enterprise LCDPs and represent the most advanced platforms.

The case studies were conducted with the following steps. First, public sources such
as product documentation and company blogs were studied to create a first impression
of the API management capabilities of the LCDP. Next, an interview with a company ex-
pert (either a product manager, architect, or chief technology officer) was conducted.
During the interview the API-m-FAMM [159] was described to the interviewee, in-
cluding all of the practices and their terminology. Together with the interviewee the
API-m-FAMM was used to assess the LCDP. Finally, the interviewees discussed their
LCDP with respect to API management, and their opinion on creating platforms on
top of the LCDP. Subsequently the interviews were processed and analyzed. Based
on this analysis and together with the company documentation the evaluation of the
LCDP using the API-m-FAMM was completed. Afterwards the evaluation was shared
with the interviewee to correct mistakes and oversights. Finally, our general findings
were discussed with the interviewees, to establish how they perceive the role of APIs
in their generated applications and whether they equally acknowledge the trend of
‘ecosystemification’.

We shortly describe the case study organizations here. Mendix is a worldwide oper-
ating low-code platform provider, founded in the early 2000s. The company employs
1,000 employees, serving thousands of customer companies and an ecosystem of al-
most 150,000 developers. OutSystems, as the second largest and oldest provider, has
been active for almost 20 years. With well over 1,000 employees worldwide, they
serve a large range of companies. Their LCDP originated as a rapid application de-
velopment platform. Betty Blocks, founded almost 10 years ago, employs around 200
people. Operating worldwide, they serve customers in all business domains. This
LCDP has a strong focus on the citizen developer in enterprises, as reflected in their
vision: ‘anyone should be able to build an application.” Pega is the oldest (40 years)
and biggest (6,000 employees) company of the four. Its LCDP evolved from a business
process modeling suite.

5.3 Introduction of the API-m-FAMM

The goal of the API-m-FAMM! is to support organizations that expose their APIs to
third-party developers in their APl management activities. Using the API-m-FAMM,
organizations may evaluate, improve upon and assess the degree of maturity their API
management processes have.

A focus area maturity model [235] consists of focus areas, and an area consists of
capabilities, which are defined as the ability to achieve a certain goal related to API
management, through the execution of two or more interrelated practices. A practice in
turn is defined as an activity that has the express goal to improve, encourage and manage
the usage of APIs. The API management maturity model is created following the steps
described by Steenbergen et al. [235] and Bruin et al. [25]. The scope, design, and
populate phase are based on a systematic literature review [158]. The model was
further refined through two rounds of interviews with experts: nine interviews in the

LA detailed description and the source data are published [159]. The model is also available on the
https://MaturityModels.org web site.

https://MaturityModels.org

Section 5.3 — Introduction of the API-m-FAMM | 119

first round and three interviews in the second round. Finally the model was used to
asses five different software products.

The API-m-FAMM consists of six focus areas that we briefly summarize here:

+ Lifecycle Management: An API undergoes several stages over the course of its
lifetime [162]. Version management is particularly challenging: complementors
in the ecosystem benefit from stable APIs, but at the same time demand new
functionality to further their own product.

+ Security: APIs provide access to valuable and protected data and assets. There-
fore, mature APIs implement the latest security standards, such as the OAuth 2.0
authorization protocol, and protection against threats such as Denial of Service
attacks.

+ Performance: APIs deliver data and services to complementors in the ecosystem.
This increases the demand for APIs to perform well under load: the application
itself as well as the complementors are negatively affected by a decrease in per-
formance.

+ Observability: An organization benefits from insight into the API’s usage. Through
various monitoring techniques, the organization is able to collect metrics which
can shed light on the API’s health and performance, as well as its usage by com-
plementors. A performant and healthy API is crucial, because an interrupted
service of the APIs will also most likely interrupt the complementors application.

+ Community: It is desirable for organizations to foster, engage, and support the
community that exists around the API. This entails offering developers the ability
to register for API access and offering them access to test environments, code
samples, and documentation.

+ Commercial: Exposing and consuming APIs can have a commercial aspect tied
to it [53]. On the one hand, APIs can require a subscription fee from the comple-
mentors, on the other hand complementors might demand Service Level Agree-
ments from the provider.

These focus areas are composed of 20 capabilities, which in turn comprise 81 prac-
tices. Within their corresponding capabilities, which may be regarded as sub-topics,
practices are ranked based on the perceived complexity of their implementation. In or-
der to verify whether an organization has implemented a practice, a set of conditions
for implementation has been defined for each practice. By examining the fulfillment of
the aforementioned implementation conditions, it may be determined whether an or-
ganization has implemented a practice. When this is done for each practice a capability
consists of, an organization’s maturity level for that capability may be determined.

We provide a description of the practice Implement Multiple API Versioning Strategy
here, to clarify how the practices are evaluated. The description of this practice is
“The organization has a versioning strategy in place which entails the process of version-
ing from one API to a newer version. In order to do so, the organization must be able to
maintain multiple versions of (one of) their API(s) for a period of time. Possible strategies
include URI/URL Versioning (possibly in combination with adherence to the Semantic Ver-
sioning specification), Query Parameter versioning, (Custom) Header versioning, Accept
Header versioning or Content Negotiation.” Each practice has an Implemented when

120 | Chapter 5 — APl Management Maturity of LCDPs

text, that describes one or more conditions to evaluate whether a practice has been
implemented or not. In this case the condition is self-explanatory: “The organization
utilizes one of the following versioning strategies: URI/URL Versioning, Query Param-
eter versioning, (Custom) Header versioning, Accept Header versioning or Content
Negotiation.” For the LCDPs, we discussed whether it is possible to maintain different
versions of the API, or whether an API always co-evolves with the model and does not
have any kind of evolution mechanisms implemented to enable different API versions.

5.4 Case Studies

This Section describes the four evaluations of the LCDPs that were done with the API-
m-FAMM. This assessment was done based on the available platform documentation
and the interview. The interviewees were able to point out mistakes in the evaluation,
comments were incorporated accordingly. First we describe the LCDPs in general, then
we discuss the six focus areas and how the LCDPs support these.

Mendix - The road map of Mendix shows a focus towards enabling citizen develop-
ers to create increasingly complex applications, which is motivated by two develop-
ments. First of all, applications developed on the LCDP are growing and becoming
increasingly complex. Second, an increase in demand from citizen developers to build
integrated applications independent from professional developers is observed. Strong
API management capabilities enable customers to split their large applications into
smaller integrated applications. The envisioned central API catalog will bring together
applications within an enterprise, enabling citizen developers to develop integrated
solutions.

OutSystems - The focus of OutSystems is ensuring that the co-development between
the citizen developer and the professional developer is made as efficient as possible.
Their vision is ‘fast and agile development of enterprise applications’. API manage-
ment is not hidden behind abstractions, but rather placed in the hands of professional
developers. The gap between technical API management and the citizen developers
is not actively bridged, instead the co-development between citizen developers and
professional developers is promoted.

Betty Blocks - This LCDP is focused on consuming APIs, instead of publishing them.
Betty Blocks states that their LCDP is not used to develop core systems, but to develop
supporting applications. Applications mostly complement existing systems. The run-
time of the LCDP consists of a web-based server and browser-based client application.
Developers do not have to explicitly design APIs, as every application feature is an API
by default through this architecture.

Pega - Ease of change and rapid application development by collaborating depart-
ments in enterprises are the focus of Pega. The developer tool of the LCDP supports
multiple personas, both the citizen developer as well as the professional developer.
Pega supports a myriad of integration options, besides REST and SOAP APIs it also
supports integration through database connection or e-mail. Despite plentiful options
to integrate with other applications, Pega has observed that a large portion of their
customers does not use these capabilities to integrate with complementors outside of
the organization.

Section 5.4 — Case Studies | 121

Through the API-m-FAMM evaluation we measure the state of API management
support that the LCDPs offer. Considering that the API-m-FAMM is targeted towards
organizations that expose their APIs to third-party developers, the evaluation of LCDPs
differs from this original intention. A LCDP is both an application (run-time) platform
and a development platform. API management practices can be implemented in dif-
ferent ways in an LCDP:

+ A practice can be statically implemented by the LCDP, meaning that the cus-
tomer cannot influence it (an example is Load balancing).

+ Variable implemented practices are those practices that can be influenced by
citizen developers or professional developers, such as the Multiple API Versions
Strategy.

+ Some practices can only be implemented by using products from third-party
vendors. An example is the Adopt Subscription-Based Monetization Model prac-
tice.

+ The LCDP is a development environment and in that capacity the LCDP can be
used to implement a number of API management practices. Examples of these
build-your-own practices are Community Forum and Broadcast API Status.

The last two categories, third-party and build-your-own, result in more work for
the customers of the LCDP. They become responsible for developing and maintaining
these specific practices, while statically and variable implemented practices do not
have these liabilities. Therefore, we evaluate the four LCDPs by scoring the practices
in two categories: supported (by the LCDP) and custom (developed) practices. The
first category consists of all statically and variably implemented practices, third-party
and build-your-own practices are grouped in the second category. Table 5.1 shows the
results per API-m-FAMM capability (details are made available [184]). Every score
consists of two numbers: first the number of practices that are supported by the LCDP,
then the number of practices that need to be custom implemented.

Focus Area: Lifecycle Management - Generally speaking, the LCDPs support both
the consumption and publication of modern APIs. Standard protocols such as SOAP
and REST are supported by all LCDPs. Mendix, OutSystems, and Pega also support
the API protocol OData. The decision of Betty Blocks to create APIs automatically
shows a strong opinion on APIs. Some practices are not implemented, because their
choice for GraphQL based APIs enforces APIs without versions. Their LCDP customers
cannot implement a versioning strategy, considering that API consumers always use
the latest version, and that customers need to take care of backward compatibility. The
other capabilities, Decoupling API & Application and Update Notification, show great
resemblance between the four LCDPs. In the first capability all practices are supported
by the LCDPs, while customers are expected to custom implement most practices in
the second capability.

122 | Chapter 5 — APl Management Maturity of LCDPs

Focus Area M (0] B P
1 Lifecycle Management 7/5 8/4 6/4 8/4
1.1 Version Management (4 practices) 2/2 3/1 2/1 3/1
1.2 Decoupling API & Application (4 practices) 4/0 4/0 3/0 4/0
1.3 Update Notification (4 practices) 1/3 1/3 1/3 1/3
2 Security 12/4 12/4 10/4 12/4
2.1 Authentication (3 practices) 3/0 3/0 2/0 3/0
2.2 Authorization (4 practices) 4/0 4/0 4/0 4/0
2.3 Threat Detection & Protection (6 practices) 3/3 3/3 2/3 3/3
2.4 Encryption (3 practices) 2/1 2/1 2/1 2/1
3 Performance 6/5 6/5 8/2 7/4
3.1 Resource Management (4 practices) 3/1 3/1 3/1 3/1
3.2 Traffic Management (7 practices) 3/4 3/4 5/1 4/3
4 Observability 5/7 5/7 5/7 5/7
4.1 Monitoring (3 practices) 0/3 0/3 0/3 0/3
4.2 Logging (4 practices) 4/0 4/0 4/0 4/0
4.3 Analytics (5 practices) 1/4 1/4 1/4 1/4
5 Community 10/8 9/9 10/8 8/10
5.1 Developer Onboarding (4 practices) 4/0 4/0 4/0 4/0
5.2 Support (3 practices) 1/2 1/2 1/2 0/3
5.3 Documentation (3 practices) 2/1 2/1 2/1 2/1
5.4 Community Engagement (5 practices) 0/5 0/5 0/5 0/5
5.5 Portfolio Management (3 practices) 3/0 2/1 3/0 2/1
6 Commercial 2/10 2/10 2/10 2/10
6.1 Service-Level Agreements (4 practices) 2/2 2/2 2/2 2/2
6.2 Monetization Strategy (4 practices) 0/4 0/4 0/4 0/4
6.3 Account Management (4 practices) 0/4 0/4 0/4 0/4
Total 42/39 42/39 41/35 42/39

Table 5.1: Evaluation of the API management maturity of the four LCDPs according to the
API-m-FAMM: Mendix (M), OutSystems (O), Betty Blocks (B) and Pega (P). For every API-m-
FAMM capability we show the total number of practices, and the LCDP evaluation. The two
numbers per LCDP stand for practices supported by the LCDP and practices that need to be
custom developed respectively.

Focus Area: Security - In the area Security there is almost no differentiation be-
tween the LCDPs. All of the LCDPs follow modern security standards such as Imple-
ment Transport Layer Encryption, Implement Authentication Protocol, and Implement
Access Protocol. The platforms support their customers in most practices.

Only the capability Threat Detection & Protection has a number of advanced practices
that need to be implemented by the LCDP customers: Security Breach Protocol, Conduct
Security Review, and Implement Zero Trust Network Access. While the providers have
implemented these practices for their own hosted services, customers are responsible
for their own protocols and are thus required to implement these practices as well.

Focus Area: Performance - Once again the LCDPs are similar in their support of

Section 5.5 — Analysis of the Results | 123

the practices in this area. In the Resource Management capability we observe that
the LCDPs implement most of the practices. Load Balancing, Scaling, and Failover
are all supported by the providers. Advanced practices in Traffic Management are
mostly left to be custom implemented by the LCDP customers. The LCDP customers are
required to configure third-party applications that implement practices such as Manage
Quota and Prioritize Traffic. Implementing these practices requires the expertise of
professional developers and thus extra investment from the customers.

Focus Area: Observability - In this area there is no difference between the LCDPs.
The practices in the capability Logging are supported by all four platforms. Monitoring
the health, performance and resource consumption of APIs is left to the customers.
Custom Analysis Reports, Status Broadcasting, and Alerts are also left to be custom
implemented.

Focus Area: Community - Practices from the area Community that focus on tech-
nical capabilities, such as Software Development Kit Support and API Catalog are sup-
ported by the LCDPs. All of the LCDPs implement the API specification language Ope-
nAPI, which supports practices such as Use Standard for Reference Documentation and
Provide SDK Support. Less technical practices, such as Social Media Presence and Com-
munication Channel are left to the customers to implement. Some of these practices,
such as Community Form, can be built on top of the LCDP.

Focus Area: Commercial - The area Commercial is underdeveloped in all four
LCDPs. Developers are not able to monetize the APIs developed on top of the LCDP,
nor are they able to construct custom Service Level Agreements towards their API
consumers. In order for customers to implement these practices they are required to
integrate with third-party API management solutions.

5.5 Analysis of the Results

The four LCDPs under study show a great resemblance when evaluating their API man-
agement maturity. The fact that they are all either leaders or visionaries in the Quad-
rant for Enterprise LCDPs makes this no surprise, considering that they are ranked
similarly. However, what is surprising is the general lack of support for advanced API
management practices.

Mendix supports 42 practices, leaving 39 practices to be implemented by their con-
sumers, making it an almost 50-50 split. The roadmap, as discussed during the inter-
view, shows a focus on supporting their customers in the API management activities.
This support is aimed at making it easier for citizen developers to build and publish
APIs of higher quality. This roadmap focuses on the practices in the Community focus
area. The area Commercial is not on the roadmap, making it harder for customers to
monetize their APIs.

OutSystems generally supports the same practices as Mendix, but made it clear dur-
ing the interview that their ambitions differ. They have a strong focus on creating a
platform that enables the development of core enterprise systems by teams consisting
of both citizen and professional developers. In this vision, there is no need to support
all practices, because the provider recognizes that their customers already have several
enterprise API platform solutions in place. Therefore, although there is a mature plat-

124 | Chapter 5 — APl Management Maturity of LCDPs

form, many of the API management practices are left to their customer to implement
themselves.

Within Betty Blocks (supporting 41 practices), publishing APIs is possible, but the
capabilities are not mature enough to build a platform. In agreement with their vi-
sion, the LCDP can be used to complement other applications, but is not as suitable
for creating core systems. This is caused by two main reasons. First of all, their opin-
ionated implementation of API versioning through GraphQL limits customers in how
they want to expose APIs to their complementors. Second, Betty Blocks focuses less
on the implementation of practices with third-party vendors. This makes it hard to
implement practices such as Prioritize Traffic.

Pega (supporting 42 practices) is focused on letting their consumers build richer
applications with their platform. These richer applications require integration with
other applications. However, the focus of Pega is on in-house company projects that
integrate within the company, or are complemented by selected organizations and
partners. Companies are not supported in building an open platform that attracts
complementors: capabilities for advanced community engagement or monetization
strategies are not supported.

Overall the focus of the LCDPs appears to be on building enterprise applications,
and less on platforms or even ecosystems. All LCDPs show that they have developed
mature platforms, with support for modern standards in security and resource man-
agement. Through their implemented practices they enable their customers to develop
and publish modern APIs that can be consumed by complementors. However, looking
at the areas Community and Commercial, which contain less technical practices, we
observe a gap. Many of the more advanced capabilities that customers can use to
build platforms and attract complementors, such as Monitoring, Analytics, Community
Engagement, and Monetization Strategy, are left to their customers to implement. The
LCDPs support around 50% of the practices, leaving the other 50% to be implemented
by their customers. In the evaluation of the API-m-FAMM with non-LCDP ecosystems
we encountered five products that implemented respectively 42%, 59%, 42%, 77%,
and 79% of these practices. Three out of five of these products are more mature than
the support offered by the LCDPs, meaning that customers would have to implement a
number of practices themselves to build comparable products with one of the LCDPs.

Not all providers agree with our belief that they should support API management
activities to enable their customers to create platforms. By not implementing these
practices, and leaving them to be custom implemented, their customers have to invest
more effort in building a platform on top of their LCDP. The providers miss the oppor-
tunity to support better API management for citizen developers. Instead they obligate
citizen developers to seek help from professional developers to complete these tasks.
This creates a dependency from citizen developers on these professional developers,
and misses the opportunity to put more power in the hands of the citizen develop-
ers, democratizing software development even further. As claimed in the Gartner
report [256] LCDPs improve productivity and reduce the time to market, and because
of the shortage of developers, democratizing development would offer a possible so-
lution. However, the current state of these LCDPs does not enable citizen developers
to create platforms, without requiring the support of professional developers. Raising

Section 5.6 — Engineering Research Challenges for LCDPs | 125

the abstraction of API management practices could and should be the next step for the
LCDPs.

5.6 Engineering Research Challenges for LCDPs

The previous section discussed the current state of API management support among
LCDPs, measured with the API-m-FAMM. Even though we provide LCDP providers
with engineering and product planning direction through this evaluation with the API-
m-FAMM, there are still several research challenges that hamper further progress in
this domain. These challenges are based on our observations made during the case
studies and on the authors’ experience with software ecosystems and LCDPs. They are
based on the capabilities that show the highest number of practices that require a cus-
tom implementation, and common remarks extracted from the interviews. We outline
these engineering research challenges here and provide several solution directions.

Life Cycle Management - Citizen developers will be constructing new application
extensions and releasing them to customers, probably without regard for software and
data complementors who use a previous version of the application. Citizen developers
need to be made more aware of the effects of data model and interface changes on
the software ecosystem surrounding the application. While typically these problems
would be solved through abstraction, it is practically impossible for citizen developers
to remain ignorant of the effects of software evolution on interfaces with third parties
in the ecosystem. This can be accomplished through, often complementary practices
such as versioning policies, backward compatibility, publishing road maps, and change
notifications [53, 112, 162].

The LCDPs support impact analysis within the platform, knowing the relations be-
tween different components. However, novel solutions to support analysis of the im-
pact on applications outside of the LCDP are necessary to support the citizen developer.

Performance - Considering that the created applications will be approached through
different channels than the traditional user interface, novel architectures are required
that can handle large volumes of traffic through other channels, such as APIs. Archi-
tecture styles such as Microservices [121] offer a possible solution to these scalability
challenges. Of course, an important requirement is the abstraction that citizen devel-
opers should be offered.

Observability - LCDPs should be able to handle an increase in users, while still pro-
viding the citizen developer with control over who uses the API, how much the API is
used, and how the API is used. API gateways [53] traditionally provide these controls
to professional developers and operational staff, but now need to be supported by the
LCDP itself and usable by non-technical users. The citizen developers need to have
access to API usage metrics and statistics to ensure that they too can identify misuse
and monitor traffic from the citizen developer’s partners [266].

Community - As the community around a product starts growing, complementors
need to be supported as much as possible. Such capabilities are for example enabling
citizen developers to generate API access credentials for complementors, infrastruc-
tures for communicating with complementors, as well as providing application stores
around a generated product. All studied LCDPs leave the development of these com-

126 | Chapter 5 — APl Management Maturity of LCDPs

munity practices to the citizen developers.

The abstractions provided by LCDPs should give citizen developers enough control
over API documentation and usage, while automatically adding technical documenta-
tion such as SDKs and source code examples. The studied LCDPs offered this through
the use of standardized specification languages, such as the OpenAPI specification.

In the past, research has been conducted on the generation of APIs [194]. However,
a number of related practices, such as Provide FAQ and Code Samples and Provide Start-
up Documentation, are only offered through consumer built solutions. These practices
are challenging to support due to an ever-evolving generated object model. Without
support from the LCDP the developer is responsible for evolving the manual written
documentation together with the model of the API. This will lead to mistakes that hurt
the community.

While the term ‘citizen developer’ indicates that it has been the goal to open up
software engineering to people without formal software engineering education, we
can hardly claim that this has been successfully accomplished for API management.
The complexity of modern software solutions and the inherent simplification required
to create LCDPs are constantly in direct conflict with each other. The platformization
trend lays this bare and shows that new models and perspectives are required to truly
make software engineering accessible to any citizen developer. We see it as future work
to design new abstractions that make LCDP solutions simpler and more powerful in
supporting API management practices.

5.7 Threats to Validity

In this paper we present four descriptive case studies that we conducted based on
interviews and documentation. Through these case studies we evaluate the current
state of API management support offered by LCDPs.

Our conclusions are threatened by concerns regarding the generalizability of these
four LCPDs when compared to the LCDP industry as a whole with respect to API man-
agement maturity. We cannot deny that there could be an LCDP that we did not study
that supports more, or even all, API management practices. However, given that we
studied four major platforms that are recognized as such in the Quadrant for Enter-
prise LCDPs report [256] confirms that we have studied a representable group. While
the API maturity evaluation might not be generalizable to other LCDPs, these four plat-
forms are recognized as the most innovative in the industry. Given that there might be
a provider that has a more mature support of API management practices only confirms
that these leaders and visionaries are missing out on opportunities to further support
their customers. Providers with less mature support of API management practices
make our call to action only more pressing.

Another threat to validity of this research are the evaluations of the LCDPs based on
the API-m-FAMM. Wrong or imprecise evaluations based on documentation and inter-
pretation could distort the conclusions. The fact that the interviewees reviewed and
corrected the evaluation mitigates this risk. We believe that the general evaluation of
the LCDPs with respect to API management, combined with the vision of the LCDP
provider gives a truthful representation of the current state of API management matu-

Section 5.8 — Conclusion | 127

rity. Our findings and conclusions are based on the global state of API management
support of the LCDPs, and do not depend on specific practice support.

In our research we focused on the LCDPs and their API management capabilities.
Although we discussed a number of organizations that built an internal platform on
top of the LCDP, we did not discuss specific example platforms. We did not specifically
search for an example, but rather focused on the general state of APl management
maturity. Future work should study existing platforms built on LCDPs to further un-
derstand what opportunities LCDPs have.

5.8 Conclusion

Our case studies, as presented in Section 5.4, evaluate four LCDPs using the maturity
model API-m-FAMM. Our research was guided by the research question: How mature
are the API management capabilities that LCDPs offer? We conclude that these LCDPs
support around 50% of the practices described in the API-m-FAMM. The other prac-
tices are left to be implemented by the customers of the LCDPs. We conclude that only
Mendix places API management firmly on its road map. Both Betty Blocks and Pega do
not observe a demand for API management capabilities among their customers, and
neither are they promoting these capabilities. OutSystems recognized the demand, but
has not yet focused on providing more of these capabilities to their customers. Instead
they defer much of the work to either third-party vendors or the LCDP customers. By
not supporting these practices we believe that LCDP providers miss out on the op-
portunity to further democratize software development. They instead require citizen
developers to solicit the support of professional developers to develop platforms that
are open for other companies to extend.

We draw the following conclusions from this work. First, we suspect that LCDP
providers will soon be challenged in providing capabilities that enable citizen devel-
opers to transform their applications into platforms. Our research shows that LCDP
providers are currently unable to support such capabilities for citizen developers and
require technical staff to implement such architectures and mechanisms through ei-
ther third-party solutions or custom solutions built on top of the LCDP. Second, we
conclude that as LCDPs are becoming more powerful, they can use the API-m-FAMM to
evaluate and update their road maps. Finally, we identify five engineering challenges
that, if solved, will create a next generation of citizen developers who can indepen-
dently create complete software platforms and software ecosystems, and subsequently
manage them without the requirement for highly specialized technical knowledge.

Data Package: Evaluations of Four LCDPs

We evaluated the API management maturity of four low-code development platforms
using the focus area maturity model API-m-FAMM. Based on these evaluations we dis-
cuss the state of API management capabilities in low-code platforms. The evaluations
of the four platforms are made available [184].

Part IV

Evolution Supporting
Architecture

Generative versus Interpretive MDD:
Moving Past ‘It Depends’

Model-driven development practices are used to improve software quality and de-
veloper productivity. However, the design and implementation of an environment
with which software can be produced from models is not an easy task. One part
of such an environment is the model execution approach: how is the model pro-
cessed and translated into running software? Experts state that code generation
and model interpretation are functionally equivalent. However, a survey that we
conducted among several organizations shows that there is a lack of knowledge
and guidance in designing the execution approach. In this article we present the
results of a literature study on the advantages of both interpretation and gen-
eration. We also show, using a case study, how these results can be utilized in
the design decisions. Finally, a decision support framework is proposed that can
provide the guidance and knowledge for the development of a model-driven engi-
neering environment.

This work was originally published in Pires L., Hammoudi S., Selic B. (eds) Model-Driven
Engineering and Software Development. MODELSWARD 2017. Communications in Computer
and Information Science, vol 880. Springer, Cham., titled ‘Generative versus Interpretive Model-
Driven Development: Moving Past ‘It Depends”. It was co-authored by Slinger Jansen and Sven
Fortuin.

134 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

model
execution
engine

modeling

modeler X
environment

interacts input for

'

'

:
' '
. External '
! interactor '
: :
' '
' '
' '

Figure 6.1: A model-driven engineering environment enables a modeler to create a model in
a modeling environment. The model is subsequently translated by the model execution engine
(using a model execution approach) into an application.

6.1 Introduction

Model-driven development (MDD) is used by software producing organizations (SPOs)
to improve software quality and developer productivity. According to Diaz et al. [59]
these improvements in quality and productivity are achieved because a well designed
model raises the abstraction level of the software development process. The abstracted
model allows for an expressiveness that can be more concise than general-purpose
programming languages. Domain-specific modeling improves that even further by
catering the model to a certain domain. The expressiveness causes both the increase
of productivity (more can be done with less) and the quality (there will be fewer mis-
takes, because there is a smaller model). The models can be used in different manners,
Brown [24] shows a modeling spectrum with, among others, roundtrip engineering,
model-centric, and model only. We are especially interested in the model-centric ap-
proach: the model is the source of truth and the application follows from the model.
The model-centric approach is implemented in Model Driven Engineering Environ-
ments (MDEE), an environment that is similar to an Integrated Development Environ-
ment (IDE) used for software development. Modelers create models using modeling
languages in a specific modeling environment, just as developers write software in
their IDE. These models are translated according to well-defined semantics, into an
application. Together these components (from the modeling environment up to and
including the application) form the MDEE (visualized in Figure 6.1). The translation
process that reads the model and produces an application is defined as the model
execution approach, and implemented in the model execution engine.

Our experiences are that the development of an MDEE is by no means an easy
task. The initial investment is large, because there are many technical challenges.
One of these technical challenges that is of particular interest to us, is the design and
development of the model execution approach. SPOs can choose for code generation,
run-time interpretation, or a hybrid form that combines both approaches (Figure 6.2).
As in every design challenge, there are numerous decisions to make (with their specific
trade-offs) that influence the overall quality of the MDEE.

Section 6.2 — Context and Related Work | 135

Just like any other (architectural) design question, the design questions for the
model execution approach can be answered with “it depends". In this article we show
that the design depends on desired quality characteristics and the context of the MDEE.
Moreover, we show how SPOs can take these characteristics into account. It might be
regarded as an implementation detail, but the model execution approach, like any
other component in the system, has its influence on the quality characteristics (such
as run-time behavior and maintainability) of the whole system. As in any system
that consists of multiple components working together, the model execution approach
should not be designed individually (i.e., not out of the context of the MDEE). The
influence of the model execution approach is similar to, for example, the influence of
a specific database on the quality of a data-intensive system. While users may not see
a difference in functionality between two different databases, the quality of the system
is affected by it, for example, in terms of performance, stability, and availability. SPOs
can deliver the same functionality, whether they choose code generation or run-time
interpretation, but the quality of the MDEE will differ significantly.

The main research question of this article is How can SPOs make an informed deci-
sion between a generative or interpretive model execution approach? In Section 6.2 we
explain the different model execution approaches in more depth, and discuss the work
already done in this area. We motivate our research question in Section 6.3 by pre-
senting the results of a survey among SPOs applying model-driven development. This
survey shows that there is no “one size fits all” solution. It also shows that many SPOs
do not have a clear rationale for the model execution approach that is used. Therefore,
decision support and clear guidance are necessary to improve the overall design and
implementation of MDEEs. Section 6.4 discusses the results of the literature study that
we have performed on the advantages and disadvantages of the generative and inter-
pretive approach. There are many hybrid model execution approaches that combine
the generative and interpretive approach. We show the preference for the two pure
approaches in terms of percentages. These percentages can be used by the SPO to find
the right balance in designing their own hybrid model execution approach. Section 6.5
describes a case study, in which we observe the design of a fitting model execution ap-
proach. We conclude that the design of a fitting model execution approach is not
detached from the overall design of the MDEE. We reflect on the case study and our
observations in Section 6.6. We observed three general areas of design decisions that
influence the model execution approach, and we present a design support framework
based on the case study. Finally, Section 6.7 and Section 6.8 evaluate and discuss the
study, and present our conclusion respectively.

6.2 Context and Related Work

There are several model execution approaches, many of which are a hybrid form of
the two pure approaches. We discuss the two pure approaches, and describe two
groups of hybrid approaches, shown in Figure 6.2. The first pure model execution ap-
proach is code generation. During code generation a model is parsed, interpreted and
transformed into source code. The generated source code generally results in running
software. This approach is not exclusive to MDD, and is formalized and defined by

136 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

Legend

Process

Artifact
— —
— >

Connect
artifacts to
processes as
input/ output

Application

Interpreter

'

Application

Interpreter

Generator —P‘\M—w—b

Generator

__

Figure 6.2: The four main types of execution approaches are generation, interpretation, sim-
plification, and mix-and-match. The darker boxes show the execution process. With the two
hybrid approaches, the execution process can be split up and divided between build-time and
run-time. The model is created at design-time, but is used at build-time and/or run-time.

Czarnecki & Eisenecker [49] as Generative Programming. According to their definition,
it is a paradigm based on modeling facilities used to automatically manufacture cus-
tomized and optimized intermediate and/or end-products. Applying generative pro-
gramming within MDD results in generative MDD. Although nothing in the definition
states that the output cannot be changed manually before the final software product
is delivered, we only regard full code generation that does not need manual changing
of the generated code. This does not imply that every part should be generated; the
generated code can be combined with frameworks or base libraries, as pointed out by
Kelly & Tolvanen [136].

The second pure model execution approach is run-time interpretation, or interpre-
tive MDD. The idea is similar to code generation, but the timing is different: the
parsing and interpretation of the model are done at run-time. There is no need to first
generate source code, the running software executes its functions directly based on

Section 6.2 — Context and Related Work | 137

the model. In this case the model execution approach becomes part of the application,
the application interprets the model before offering functionality based on the model.
Further manual coding is not possible with this approach, because there is no time
to intervene in the execution of the software. However, as we see in Section 6.3 it is
possible to combine custom code with an interpreter. The model needs to be deployed
along with the running software, while in the generative approach, the model is not
part of the running software.

These two approaches form the extremes of the execution spectrum, and many hy-
brid forms are possible. We see two groups of hybrid approaches. The first group
is simplification: a model is transformed into a second model before deploying it for
run-time interpretation. In this approach there is both a generation step and an inter-
pretation step, instead of generating source code. The generation step transforms the
model into a second model that can be interpreted at run-time. This can be achieved
by transforming high-level concepts into low-level concepts, or by transforming into
a model with fewer constructs. The results of this approach are manifold: 1) The in-
terpreter is easier to develop and better maintainable, because it has to support fewer
constructs. 2) The translation is less complex, so the interpreter is faster. And finally,
3) the interpreter becomes more reusable, because there can be many different mod-
els that can be transformed into the intermediate model. This approach is also used
by programming languages that compile into an intermediate language that is in turn
interpreted by a runtime environment, such as the approach Meijler et al. [163] dis-
cuss. They generate Java source code, but use a customized class loader that acts as a
run-time interpreter.

The second group of hybrid approaches is a match-and-mix approach: some parts
of the platform use code generation, while others use interpretation. This approach
can be used both from an architectural perspective as well as from a model perspec-
tive. The MDEE could use a different approach in different components, for instance,
the user interface could be interpreted, while the database access layer is generated.
Different approaches could also be chosen based on model dynamics, where the more
stable parts can be generated into source code and the more dynamic parts are inter-
preted.

Figure 6.2 shows the four described approaches, marking out the time at which the
execution takes place. In the generative approach, the execution is done at build-time,
as opposed to the interpretive approach in which the execution takes place at run-
time. Both the simplification and mix-and-match approaches show that they have part
of the execution at build-time, and part at run-time. This makes them flexible, because
SPOs can decide how much happens at what time. These hybrid approaches can also
be combined; the mix-and-match approach can combine the interpretive, generative,
and simplification approach into a single encompassing model execution approach.

There is already some work done on the challenge of designing a fitting model ex-
ecution approach, which is discussed in this article. A multi-criteria analysis of the
different approaches is performed by Batouta et al. [13] with as goal to support of
the decision-making. Their analysis results in a decisive statement about the best ap-
proach (based on their list of ten criteria). However, they do not take the context of
the MDEE into account. Fabry et al. [77] address a number of advantages regarding

138 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

the different model execution approaches, but they do not give any support for the
decision-making. Zhu et al. [279] research the decision-making within MDD applied
to game development, however, they only look at other architectural decisions rather
than the model execution approach within a MDEE. Code generators and the interac-
tion with developers is researched by Guana & Stroulia [101], only without making a
comparison with the interpretive approach. All of the mentioned work is incorporated
in the literature study in Section 6.4.

The design of software and its architectures is a thoroughly researched topic. Kruchten,
Capilla & Duenas [147] show how design decisions play a role in software architecture,
and that it is important to capture them. Jansen & Bosch [122] define “software ar-
chitecture as the composition of a set of architectural design decisions”, and formalize
this in the Archium approach which is further extended by Ven et al. [254]. Svahn-
berg et al. [239] present a decision process that, based on desired quality attributes,
supports an SPO in finding the architecture variant that shows the most potential. We
combine the definition of software architecture as a set of design decisions with the
approach to support a decision with quality attributes, and apply this to MDD. Be-
cause of this we are able to uncover the rationale of either a generative or interpretive
approach, and support SPOs in their design process.

6.3 How SPOs Design and Develop MDEEs

We interviewed 22 product experts of 16 different SPOs that develop MDEEs. All of
the experts had either five or more years experience with the product or were working
with the product since its start. They served in different roles at the time: 12 of
them as chief executive, the others in different roles such as lead developer, business
developer, and sales manager. These experts were asked questions on the design and
implementation of their company’s MDEE. The SPOs were identified by an Internet
search, exploiting our network, and asking interviewed product experts.

We identified 36 qualifiable case companies with representatives in Belgium, The
Netherlands, or Luxembourg. For 16 companies we found experts that were willing
and able to cooperate in our research!. The companies differ in size (ranging from ten
employees to thousands of employees), in market (some operate only in The Nether-
lands, while others operate worldwide), and maturity (some MDEEs are almost twenty
years old, while others only two years). After we processed the answers, every expert
had the opportunity to correct any mistaken interpretations. The answers are summa-
rized in Table 6.1.

The first topic of interest is the target users of the MDEE and its modeling language.
We asked the experts what the target group of users for the MDEE is, and what kind
of expertise they expect from them. Their answers resulted in four categories of users:

+ Laymen are people without any technical knowledge.

+ Technical business users are those that have some knowledge of software de-
velopment, but are no developers. They are expected to have knowledge about
software concepts such as data models, and data types. An informal description

1Some needed to be excluded due to confidentially issues or the lack of (technical) knowledge.

1139

Section 6.3 — How SPOs Design and Develop MDEEs

‘surtojierd gam 1ounsIip oml 1oddns ey SHIAIN
AJIIuapI . UB YUM PaYyIBW S[[3D Y], *(SIB94 Juswdo[2A9p JO JoqUNU JO SULIS] Ul) AJLINJewW puk (S9a40[dws Jo Joquinu Jo suLa) ur) 9z1s Aueduod
oyl yum 3uore ‘umoys a1k yoeoidde uUONNIIXS [9pPOW Y} pue SIAsN J31el YL ‘SOJS Suowe ASAINS) JO SINSII paziwAuouy :1°9 d[qel,

%8¢ | Vs / / LS XIw-pue-pIejy
%¢ET Vs Vi uoneoyrduis
%0S | / Lror 2 Vs VA / s uoneIauan
%69 | £/ VA / /S /S VA A uonelardaug
yoeosdde uonnodaxa PO
%LE Va Vi Va Va LA s1adofansg
%9 , suadxe T0S
%9S | / LrL LS, s s Lr SI9ST SSauIsnq [BSIUYI],
%NTE , , , , /, uawAeT]
s19sn 1931e],
%9 / S[IqoIN
%61 , /, / dowjsaq
%00T | A L/ S LSS S S S S S LS LSS SEIN
surrojye[d 1081e],
%t S /S VA s ST+
%LE | LS/ / / LN S1-9
%61 / Vs VA S-0
s1eaf Juswdoranaq
%EL / / soakordure o5+
%TE /, LroLr 2 /, saakordws 005-001
%S | £ L/ , / LrLS LSS saakordura 05-0
9z1s Auedwo)

»n W n » »n » W W »n W n W »n » »n W

v e B~ A - B « B o B ' eI T v v v Y

S O S © © © O O S O S © © © © ©O

> & =~ & &5 = & ¢ ® o A

140 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

would be people more knowledgeable than layman, but less knowledgeable than
developers.

+ SQL experts are a specific set of users that are able to write SQL queries. They
are not able to write software in other programming languages. This specific cat-
egory was added after the review with SPQO,, because the category developers
did not match their target description.

+ Developers are those users that are able to write software in a programming
language. MDEEs that target developers expect them to be familiar with IDEs
and other programming concepts.

A third of the SPOs specifically target laymen, while the others require some form of
technical knowledge of their users. There is no correlation found between the model
execution approach and the targeting of laymen. In the case study we conducted (see
Section 6.5) we also observed the design of an MDEE that targets laymen. A third
of the SPOs that target technical business users also target developers, their MDEEs
support custom programming, because the model is not able to express all required
functionality. The six SPOs that target developers all use an interpretive approach,
four of them also use code generation.

Five SPOs (SPO3, SPOg, SPOgy, SPOq3, and SPO;g) state that a reason for their
model execution approach is a certain required build-time behavior. As an example,
the expert of SPO;¢ states “You can’t generate code again in an end application that is
already generated. To allow workflow modeling in the end application, we were forced
to make use of an interpretative solution.". All of the five mentioned SPOs explain that
users are able to change the model, and expect that their changes are (near) instantly
applied and visible in the application. Four of them use run-time interpretation, while
the other one uses a simplification approach. The SPOs that use a generative approach
did not mention such a requirement for build-time behavior.

All of the SPOs target a web platform, meaning that they support at least back-end
and front-end applications. Three of the SPOs, however, support two different back-
end platforms, one also supports mobile applications, and two others also support
native desktop applications. Effectively, we can conclude that all SPOs support multi-
ple platforms. The interpretive approach is motivated three times by the advantage of
platform independence, or portability.

We have found little reasoning behind the implemented approaches, one expert
even stated “We just had to go with one of the two.”. An expert of SPQOg refers to an
advantage in portability for interpretation, a correlation that we will see again in Sec-
tion 6.4: “By interpreting the Ul and generating the remaining parts of the application,
we are able to share models between different platforms.". A reference to resource utiliza-
tion is made by an expert of SPO14: “We don’t want to regenerate an entire database
every time the model changes, because this can potentially cause a lot of problems with
data migration.". The interviews show that all approaches are used, and nearly half of
them use a hybrid form. This supports our claim that the model execution approach
depends on many factors and is context-specific. We cannot give a simple answer such
as “web platforms should use an interpreter”, Table 6.1 shows that other approaches
are used for web platforms as well. Like Kruchten, Capilla & Duenas [147] we believe
that it is important for SPOs to document the rationale behind important architectural

Section 6.4 — Quality Characteristics of Model Execution Approaches | 141

decisions. In the next section we will show that the model execution approach influ-
ences the quality of the MDEE, and that it is important to capture the rationale of the
design.

6.4 Quality Characteristics of
Model Execution Approaches

We started the literature study by executing a literature review on the advantages and
disadvantages of both code generation and run-time interpretation. The literature
review was done with the snowballing approach as described by Wohlin [270]. The
snowballing approach uses references between articles as a means to discover other
relevant literature. The first step is to select a start set from which the references can
be followed. This approach was chosen because the research areas to be covered in
this review are broad. We expected literature from the MDD field as well as Domain-
Specific Language engineering and compiler design. The second reason was that the
literature that we had found in earlier explorations never mentioned the advantages
or disadvantages directly; these were often hidden in implementation details.

Our start set was created by earlier informal explorations with the Google Scholar
engine, using “interpretation versus code generation” and “interpretation vs. code gen-
eration” as keywords. We selected five articles as the start set [56, 163, 166, 243, 259].
These papers represent the different research areas and have a broad research ques-
tion, resulting in many references (both backward and forwards). With this start set
we executed several steps, following both backward and forward references. The lit-
erature found was included when it mentioned advantages or disadvantages of model
execution approaches; we ended up with 35 studies.

The literature was classified using the ISO standard 25010:2011 for software prod-
uct quality [118]. This standard is used to assess the quality of software systems, and
matches our intent to assess the quality of MDEEs. The ISO standard consists of eight
categories with 31 characteristics. We found evidence for differences in quality fulfill-
ment for five out of these eight categories, summarized in Table 6.2. The summary
of all the evidence found is presented in Table 6.3. There was no evidence found for
the categories functional suitability, usability, and reliability. The first two categories
match the statement of Stahl et al. [234]: “code generation and model interpretation
are functionally equivalent”. For the category reliability no evidence was found as well,
which was expected. Reliability is the degree to which the system performs its func-
tions under certain conditions. We assume the generative and interpretive approach
to be functionally equivalent, and in both approaches it is possible to build a reliable
functioning system.

Table 6.3 presents every mention of an advantage or disadvantage in relation to
its source and quality characteristics. A G stands for a preference of generation over
interpretation, while an I stands for the opposite. When we encountered statements
on the two approaches without a preference, we marked the corresponding cell with
both G and I. The total number of preferences is used to calculate the percentage of
the two alternatives with respect to the quality characteristic. The evidence we found
is presented in relation to the generative and interpretive approach. This does not

142 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

Category Characteristics

Functional suitability | Functional completeness, Functional correctness, Functional appropriate-
ness

Performance efficiency | Time behaviour, Resource utilization, Capacity

Compatibility Co-existence, Interoperability

Usability Appropriateness recognizability, Learnability, Operability, User error pro-
tection, User interface aesthetics, Accessibility

Reliability Maturity, Availability, Fault tolerance, Recoverability

Security Confidentiality, Integrity, Non-repudiation, Accountability, Authenticity

Maintainability Modularity, Reusability, Analysability, Modifiability, Testability

Portability Adaptability, Installability

Table 6.2: The categories and characteristics from the software product quality model in ISO
standard 25010:2011. For the emphasized items we found evidence of a preference for either
code generation or model interpretation.

mean that the hybrid approaches are not mentioned by the authors (as discussed in
Section 6.2). However, the advantages and disadvantages we found were always in
terms of the generative and interpretive aspects of an approach.

6.4.1 ISO: Performance efficiency

The characteristics in the category Performance efficiency describe the performance of
a system: how the system utilizes resources, responds to requests, and meets the
capacity requirements. For two of the characteristics evidence was found.

Time behavior - The first characteristic for which we found evidence is the time
behavior of the system. For MDEEs, this is a special characteristic, because there are
two main use cases for which the response and processing time are important. The
run-time time behavior describes the response time of the functionality offered in the
application. However, the second important use case for which response time is im-
portant, is the translation from model to application. When a generative approach is
used, the model execution approach takes up time between model changes and soft-
ware updates. When an interpretive approach is used, there is no time between model
changes and software updates because the execution happens during the execution of
normal system functions. These two distinct use cases are confirmed by the literature
we studied: we found comments in relation to both approaches. Therefore this char-
acteristic is split into two separate characteristics. Both build-time time behavior and
run-time time behavior are used as two separate characteristics in our study.

22 out of the 32 papers mention the time behavior characteristic, it is one of the
most frequently commented characteristics. Because of the possibility of doing upfront
analysis during code generation, more efficient code can be generated. On the other
hand, interpreters add overhead to run-time functionality and thus are slower. While
that is the general sentiment, Klint [142] remarked that the overhead of interpreters
will diminish with the advent of hardware. Both Ertl & Gregg [72] and Romer et al.
[210] show that there is nothing that makes interpreters inherently slow.

The reduced build times that an interpretive approach results in are an advantage;

Section 6.4 — Quality Characteristics of Model Execution Approaches | 143

g g g g £ 2 B =

LE 2% el 8 B €|z & £ 5 |E £
g5 E£ 8| & 8| 5|5 £ £ = |E =
TS <% 28| % S| E |2 2 E § |& T
4y =Y 2= @ 3} = bS] < ° & < 8
25 ZE 5|8 E|S |2 & = & |3¥ £

[13] G I G G I G G

[20] G I I I I

[38] G GI

[42] G I I I

[43] G G I G

[44] I I

[49] G I

[59] G I I G

[72] GI I I I

[77] G G I I

[91] G I

[98] G GI I I I I

[101] I I I

[109] I

[116] I

[129] G I I G

[131] I I I

[142] GI G I I GI I

[163] G I G G G G

[166] I I G I

[179] G I I G

[192] G I

[207] I

[210] GI

[226] 1

[234] I G I I 1

[238] I 1 I I

[243] G I G I I

[244] G I G I 1

[247] G I

[246] I I

[252] G I I

[259] G I G G G G G

[260] G I G G G

[280] G I G G

% generation 88 0 875| 0 0 | 100 |20 20 15 555 |30 50

% interpretation 12 100 12.5 100 100 0 80 80 85 44.5 70 50

Table 6.3: The results of the literature review and basis for the ranking of the two approaches. G
corresponds with a preference for code generation over interpretation. I identifies a preference
for interpretation over generation. G I indicates where advantages or disadvantages where
given without a clear preference.

144 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

they enable agile development and better prototyping. This advantage is stated by
Consel & Marlet [42] and Riehle et al. [207] among many others.

Resource utilization - The general comment that code generation results in im-
proved run-time behavior can be extended to resource utilization as well. Meijler et al.
[163] state that generators can optimize for more than run-time behavior only, some-
thing that is useful in, for instance, embedded systems and game environments. A
difference can also be seen in how generators or interpreters compete with the run-
ning application for resources. A generator might use more memory, but could be
running on different hardware than the application. Interpreters are part of the ap-
plication, so it could be hard to run them on different hardware. Gregg & Ertl [98]
comment that interpreters often require less memory, but confirm the competition for
resources with the application.

Another view on resource utilization is the data storage for an application. Meijler
et al. [163] point out that the interpretive approach often leads to a less optimal data
schema. The schema might depend on the model and thus can change at run-time,
therefore, the schema has to be flexible enough. This requirement often conflicts with
optimizations that might be achievable otherwise.

6.4.2 ISO: Compatibility

The category Compatibility contains characteristics that express the quality of co-existence
and operability of the system.

Co-existence - Only two papers contain evidence for a preference between inter-
pretation or generation based on this characteristic. Gaouar, Benamar & Bendimerad
[91] share their experiences in making dynamic user interfaces and point out how the
interpretive approach enabled them to use native platform elements. A different side
is shown in Jorges [131]: the late binding that interpretation offers makes it possible
to re-use the same application instance for different tenants.

Interoperability - Interpreters have access to the dynamic context of the applica-
tion at run-time. Fabry et al. [77], Ousterhout [179], and Varrd, Anjorin & Schiirr
[252] state this as a preference for interpreters, because it allows them to communi-
cate with the application in a way that is not possible by generators.

6.4.3 ISO: Security

Security describes the quality in terms of integrity, authentication, and confidentiality.
The literature only contained evidence for the characteristic confidentiality.

Confidentiality - Tankovi¢ [243] and Tankovi¢, Vukoti¢ & Zagar [244] describe the
models used in a MDEE as intellectual property. The interpretive approach exposes the
model to the application, making it more vulnerable to exposure. In the generative
approach the models do not need to be shipped, which makes that approach more
secure.

6.4.4 ISO: Maintainability

Maintainability is an important aspect in the quality of software products. Character-
istics in this category that were mentioned by literature comment on the testability,

Section 6.4 — Quality Characteristics of Model Execution Approaches | 145

modifiability, analysability, and modularity of the platform.

Modularity - Most literature favors interpreters over generation when looking at
the modularity characteristic. Inostroza & Storm [116] and Consel & Marlet [42]
propose solutions for modularization within interpreters. Cleenewerck [38] is the
only one who argues that generators are more preferred than interpreters when it
comes to modularization.

Analysability - An important aspect in MDEEs is the analysis of the resulting appli-
cation. It should conform to the model and the defined semantics, which is not an easy
task. When a generative approach is used, the model is translated into a separate lan-
guage, without losing the semantics of the model. Proving that translation is correct is
hard, according to Guana & Stroulia [101]. According to Jorges [131], the interpreter
can play the role of a reference implementation, used to document the semantics of
the model. This improves the analysability of the platform.

Debugging is partly analyzing the run-time behavior of an application. According to
Voelter [259] and Voelter & Visser [260] this process is easier in a generative approach,
because the generated application can be debugged as if it were a normal application.

Modifiability - Many, such as the works of Cook et al. [43] and Diaz et al. [59]
among others, claim that interpreters are easier to write. We conclude that easier to
write software is also easier to modify. Cordy [44] describes the process of a com-
piler as being heavy-weight, making it harder to modify. Cleenewerck [38] and Voel-
ter & Visser [260] argue that generators give more freedom to developers, giving them
room for better solutions.

Testability - The literature was far from conclusive on the testability of both ap-
proaches. On the one hand, interpreters can be embedded in test frameworks, this
makes them easier to test. Generators on the other hand add indirection in the test-
ing, because they are a function from model to code. Asserting the correctness of the
output becomes fragile when just looking at the written code, the easiest way is to
determine the correctness by running the code. Voelter [259] and Voelter & Visser
[260] prefer generation when it comes to debugging, because the model translation
can be left out of the testing.

6.4.5 ISO: Portability

Portability covers the characteristics of adaptability and installability.

Adaptability - The separation between generation environment and application en-
vironment makes the generative approach preferred according to Meijler et al. [163],
Batouta et al. [13], and Voelter [259]. The two environments can be evolved at a
different pace when adaption needed, which makes it more flexible. In an interpre-
tive approach the whole interpreter needs to be rewritten and although this might be
easy, it is more work. However, Tankovi¢ [243], Tankovi¢, Vukoti¢ & Zagar [244], and
Gregg & Ertl [98] state that porting an interpreter to a new platform is no problem
when platform independent technologies (such as programming languages and envi-
ronments that run on multiple platforms) are used. This matches the results from
Section 6.3, where three SPOs stated portability as the rationale for the interpretive
approach.

146 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

Installability - The two separated environments in the generative approach not
only have a clear advantage for adaptability, they also have an advantage with re-
spect to installability. Meijler et al. [163], Cook et al. [43], Batouta et al. [13], and
Voelter [259] prefer code generation because it can target any platform, it does not
constrain the target application. The initial installation is, however, not all that is im-
portant, when the MDEE is updated, re-installations are needed too. The interpretive
approach makes re-installations less frequent, because in many cases only the model
needs to be updated. This advantage is pointed out by Tankovi¢ [243] and Mernik,
Heering & Sloane [166].

6.4.6 Utilizing the Preferences

The results of the literature study as presented in Table 6.3 can be used by SPOs to
design their execution approach. But before SPOs can use these results, they have
to prioritize the quality characteristics; i.e., they have to determine which character-
istics are most important for them. When priorities are assigned, the preference for
either the generative or the interpretive approach can be calculated by the following

formulas:
12

12
Pgenerative = Z Ple and Bnter;m’etive = Z 13111
i=1 i=1
The formulas summarize all twelve characteristics ¢, and apply the priority (F;) on
the corresponding preference (from Table 6.3) for both the generative (G;) and the
interpretive (I;) approach. All priorities add up to a total of 1, and because for every
characteristic ¢ G; I; add up to 100%, Pyenerative ad Pipierpretive add up to 100%.
The outcome shows for a certain set of priorities what the preference for either the
generative or interpretive approach is.

How the priorities are determined is not prescribed, however, in the case study
described in the next section we will show two possibilities. The first option is by
informally giving a weight to every characteristic, dividing 100% among the different
characteristics. By doing this informally, the SPO takes the risk of calculating a pref-
erence with inaccurate data. Therefore, we also show a second option to prioritize
the characteristics: the Analytic Hierarchy Process (AHP) method described by Saaty
[214]. Falessi et al. [78] show that the AHP method is helpful in protecting against
two difficulties that are relevant for this study. The first is a too coarse grained indi-
cation of the solution. When the priorities are determined informally it becomes easy
to overlook certain characteristics. The second difficulty is that there are many qual-
ity attributes that need to be prioritized, and many attributes have small and subtle
differences. The AHP method helps by prioritizing in a pairwise manner, the priorities
are only determined relative to other characteristics.

6.5 Case Study

We conducted a case study by observing the design of an MDEE at a Dutch SPO, AFAS
Software. The NEXT version of AFAS’ ERP software is completely model-driven, cloud-
based and tailored for a particular enterprise, based on an ontological model of that
enterprise. The ontological enterprise model (OEM, see Schunselaar et al. [227])

Section 6.5 — Case Study | 147

will be expressive enough to fully describe the real-world enterprise of virtually any
business. The platform initially used a generative approach, generating many lines of
C# and JavaScript. However, during the course of 2016 a shift was put into motion
towards a hybrid form with more parts being interpreted at run-time. We took part in
the discussions surrounding this shift and observed the team while they designed and
implemented parts of the MDEE.

We already explained that the context of the MDEE influences the design of the
execution approach. This can be seen if we approach the architecture as a set of
design decisions as described by Jansen & Bosch [122] and Ven et al. [254]. These
decisions are made during the software development life cycle. Every requirement
is satisfied by first creating one or more solutions, from which the SPO selects the
best fitting alternative. This is done by assessing the solutions, for instance in terms
of quality, cost, and feasibility. After a solution is selected, the preferred solution is
incorporated into the existing architecture. This process is continuous and will be
repeated for every new requirement that needs to be satisfied.

The complete architecture of an MDEE is too large to present in this paper, therefore,
we present the most important and guiding requirements and decisions. These are
presented in two distinct phases, to illustrate two different utilizations of the results
from Table 6.3. The requirements and decisions that form the architecture and are
input for the prioritization are summarized in Table 6.4.

Requirements

R1 Target audience for the modeling language are laymen

R2 Users do not manage or maintain the MDEE themselves

R3 Cost effectiveness of the MDEE is important

R4 Use a technology that the developers are familiar with

R5 The MDEE should handle the load from the existing customer base
R6 End users can change the model without intervention

Decisions

D1 Develop an ontological enterprise model

D2 Use a SaaS delivery model

D3 Use multi-tenancy to gain resource sharing
D4 The MDEE should run on the .NET runtime
D5 Deploy the MDEE as a distributed application
D6 Use a hybrid execution approach

Table 6.4: Summary of the requirements and decisions from the design of the MDEE.

The initial requirement that guided the design of the MDEE is the envisioned target
audience for the modeling language (R1). By choosing laymen as the target audi-
ence, it becomes possible for non-technical business users to model their own ERP
solution. This requirement is driven by years of experience in the development of an
ERP solution, and the knowledge that is accumulated in those years. The resulting
design decision is that the modeling language should be a model with a high level of
abstraction, an ontological enterprise model (OEM) (D1). This model abstracts from

148 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

the many details that are needed for creating software, those details are added by the
platform (the generator or interpreter) when the model is transformed. A second re-
quirement is that the hosting and management of the MDEE is done by the SPO (R2).
Delivering the MDEE through a Software-as-a-Service (SaaS) model is the second de-
sign decision (D2) that satisfies requirement R2. A third important requirement is cost
effectiveness of the MDEE (R3), and multi-tenancy is one of the ways of achieving that
as stated by Kabbedijk et al. [132]. The decision for a variant of multi-tenancy forms
the last important decision (D3) of this initial phase.

After the design of the initial architecture, which solved among many other require-
ments R1, R2, and R3, the execution approach is designed. At the time of this design,
the literature study as presented in Section 6.4 was not yet done. After discussion with
the team, we concluded and verified that in hindsight four quality characteristics were
especially important for this phase of the development. Run-time time behavior and
resource utilization followed from the decision for SaaS (D2) and multi-tenancy (D3).
Testability and analysability were important to AFAS in ensuring the quality of the new
MDEE. The data in Table 6.3 and the priorities that we assigned in hindsight allow
us to calculate the preference for an approach. The possible calculation is shown as
an illustration. The first two characteristics (resource utilization and run-time time be-
havior) are assigned a priority (or weight) of 35%, the other 30% is split between
the other two characteristics (testability and analysability). The resulting preferences
can then be calculated by combining the priorities of the characteristics with their
weights (expressed in percentages, summing up to a total of 100%). We apply formu-
las Pyenerative and Pipterpretive to the percentages from Table 6.3 and the priorities,
resulting in the following calculations:

Pyenerative =0.35 % 0.88 +0.35 * 0.875 + 0.15 * 0.55.5 + 0.15 % 0.20 = 0.729
Pinterpretive = 0.35 * 0.12 + 0.35 » 0.125 + 0.15 * 0.44.5 + 0.15 x 0.80 = 0.271

The outcome of the calculation matches the decision that AFAS made, and their
initial execution approach was the generative approach. This initial phase of require-
ments, decision making, and design of the architecture can be summarized in three
statements.

+ R1 leads to D1
+ R2 in the context of D1 leads to D2
+ R3 in the context of D1 and D2 leads to D3

As the design of the MDEE advanced new requirements needed to be realized. First
of all, the technology that is used to develop the MDEE was selected. The requirement
was that a technology should be used that is familiar to the development team (R4).
This fourth requirement led to the decision for the .NET runtime (D4) as the tech-
nology to develop the platform on. The next requirement formulated expected load
requirements: AFAS has a large existing customer base that needs to be transferred to
this new platform. There is an expected load known from the existing customer base
that needs to be handled (R5). As a result of this requirement, the decision was made
to design and deploy the application as a distributed system (D5).

The sixth requirement reopened the design of the model execution approach. There-
fore, the team decided to backtrack on the earlier decision for the generative approach.

Section 6.6 — Case Study Reflection | 149

Priority | Generative Interpretive

Run-time time behavior 0.059 0.88 0.12
Build-time time behavior | 0.278 0.00 1.00
Resource utilization 0.098 0.875 0.125
Co-existence 0.045 0.00 1.00
Interoperability 0.012 0.00 1.00
Confidentiality 0.012 1.00 0.00
Modularity 0.062 0.20 0.80
Analysability 0.023 | 0.20 0.80
Modifiability 0.150 0.15 0.85
Testability 0.085 0.555 0.445
Adaptability 0.155 | 0.30 0.70
Installability 0.021 0.50 0.50
Preference 0.293 0.707

Table 6.5: Summary of the priorities of quality characteristics determined by applying AHP as
described by Saaty [214]. Columns Generative and Interpretive show the preferences for code
generation and model interpretation from Table 6.3. The final preferences are calculated with
the formulas Pgenerative and Pinterpretive-

AFAS envisioned that customers are able to customize the model without intervention
from AFAS (R6). This requirement leads to other requirements, such as the expected
turn around time between model changes and application updates. Based on require-
ment R6 and the decisions D1-D5 the quality characteristics were prioritized. Charac-
teristics build-time time behavior, adaptability, and modifiability became more impor-
tant. This time the prioritization was done by applying the AHP method: all the char-
acteristics were pair-wise compared and ranked according to the method described by
Saaty [214]. The results are shown in Table 6.5, combined with the preferences from
Table 6.3. The final outcome preferred interpretation over generation with 71%.

The team decided to implement a simplification approach: the OEM is simplified
into a simpler model by the generator. This way the team was able to satisfy the build-
time time requirements, without sacrificing performance. Because the MDEE itself
had already grown quite large, the team decided to also switch to a mix-and-match
approach. The simplification approach was first implemented in a specific component:
the messages that are passed between the different parts of the distributed system.

An architecture consists of many decisions, both large and small, both important
and non-essential. Our case study only shows the five most important requirements.
In the next section we will reflect on the case study and derive a proposed decision
support framework for the design of a model execution approach.

6.6 Case Study Reflection

In Section 6.5 we observed an SPO during the design of an MDEE. We have shown how
design decisions from the architecture determine the priorities of the quality character-
istics. The existing architecture of the MDEE and the design decisions that are present,

150 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

together form the context of the model execution approach. It shows that, just as
with any component in a larger system, the design of an execution approach does not
stand on its own, but needs to be embedded in the overall architecture. Some design
decisions might constrain the execution approach, other design decisions might even
mitigate the problems that an execution approach gives. As an example we look at
build-time time behavior, a requirement that was described in the previous section.
From Table 6.3 we learn that the interpretive approach is preferred when a specific
build-time time behavior is required. However, when the MDEE is built using a pro-
gramming language and platform that uses interpretation, such as JavaScript, the de-
crease in build times with a generative approach might be mitigated. An interpreted
language does not need a separate compile step that needs to be executed by the gen-
erator, and that reduces the build time. This shows that the design decisions that are
already present influence the execution approach.

We have distilled three areas from the decisions described in Section 6.5 that steered
the design of the model execution approach. The decisions described in Section 6.5,
and summarized in Table 6.4 are used to illustrate the areas.

6.6.1 The Metamodel

The metamodel and its features and requirements have an influence on the most fitting
model execution approach. This is illustrated by decision D1: OEM and requirement
R6: Customize the model.

A model with a high-level of abstraction (such as D1: OEM) will require a more
complex model execution, because the distance in terms of abstraction between a
programming language and the model is larger. With an interpretive approach, the
application will require more resources to perform this model execution. This influ-
ences the run-time behavior of the model execution approach, and thus the application
itself.

On the other hand, requirement R6: Customize the model increases the priority
of the build-time time behavior characteristic. This leads to a preference for run-
time interpretation, because that approach is preferred if build-time time behavior is
important.

6.6.2 The Architecture

The chosen architecture for the application forms a second area of influence on the
most fitting model execution approach. A multi-tenant, distributed application (as de-
fined by D3: Multi-tenancy and D5: Distributed application) can result in conflicting
requirements for the most fitting model execution approach.

On the one hand, multi-tenancy prefers interpretation, because it allows the sharing
of a single application instance for multiple tenants (see characteristic co-existence in
Section 6.4). This maximizes the resource sharing, and enables fast unloading and
loading of changes, which decreases the build times. On the other hand, a distributed
application might not benefit from interpretation, because every process has to do the
interpretation. Figure 6.2 shows that the interpretation process is part of the applica-
tion, and is thus duplicated when the application is separated in multiple components
and processes. This adds resource utilization to the platform.

Section 6.7 — Discussion | 151

The decision for a distributed application (D5: Distributed application), makes it
possible to design a hybrid model execution approach. A distributed application con-
sists of different (distributed) components that can use their own execution approach,
as shown in Section 6.5 where only the messages were re-designed.

6.6.3 The Platform

Although Kelly & Tolvanen [136] make no distinction between the architecture, frame-
work, the operating system, or the runtime environment, we see a different influence
from the operating system or runtime environment. As decision D4: .NET platform il-
lustrates, the lack of support for dynamic software updating requires a different model
execution approach to satisfy the requested build-time time behavior. This matches the
approaches of Meijler et al. [163] with their customized Java class loader and Czar-
necki & Eisenecker [49] using the extension object pattern.

The SaaS delivery model (D2: SaaS delivery model) removes most of the problems
around installability and co-existence: the platform is controlled by the SPO.

6.6.4 The Decision Support Framework

From the observations we see three distinct areas that influence the model execution
approach. The metamodel and its features and requirements lead to decisions that in-
fluence the execution approach. The architecture and the platform can both constrain
the execution approach as well as mitigate challenges. Determining the priorities for
the quality characteristics can be a difficult task.

The design of the best fitting model execution approach for an MDEE is not different
from other parts of the MDEE; it is not possible without knowledge of the context.
The description of the design process that we gave in Section 6.5 is generic for the
software development life cycle. We propose, based on the observations made during
the case study, a tailored version of the process for the design of a model execution
approach (shown in Figure 6.3). It shows that the current architecture is input for the
prioritization of the quality characteristics. The priorities can then be used to assess
the possible execution approaches. How the priorities are determined is not prescribed
by the framework, however, we have shown two possible methods to determine them:
an informal method and the AHP method.

The framework offers guidance for SPOs in the design of their model execution
approach. By formalizing their architecture in a set of design decisions, and by pri-
oritizing the quality characteristics, SPOs can calculate the preference for either the
generative or the interpretive approach. This can then in turn be used to design a
fitting hybrid model execution approach.

6.7 Discussion

The validity of our research is threatened by several factors. The internal validity of
our study is threatened because the correlation between quality characteristics on the
one hand and the execution approach on the other hand are not straightforward. The
claims in the reviewed literature, however, do show a convergence towards each other.

152 | Chapter 6 — Generative versus Interpretive MDD: Moving Past ‘It Depends’

Design possible Legend
model execution
approaches
PP Model execution
approach Process
Determine the - — o | Assess the Artifact
priorities g Priorities g approaches \-/—\
T ¢
Connect artifacts to
Current Preferred model processes as input/
architecture (all execution output
design decisions) approach

Figure 6.3: The process of selecting a best fitting model execution approach. The process starts
with the design of possible execution approaches. The current architecture is the input for the
prioritization of quality characteristics. The priorities can be used in assessing possible execution
approaches.

Some characteristics lack a significant number of references, making them volatile.
However, we regard the claims that are made not as controversial, but in line with
existing research. The data that we found in literature consists of anecdotal argumen-
tation, based on the experience of the authors. The claims that were made, were not
validated and not supported with empirical evidence. To create a more trustworthy
decision support framework, the data presented in Table 6.3 should be validated by
empirical research. Experiments or large case studies should provide more quantita-
tive data on the fulfillment of the different quality characteristics.

The construct validity of our case study is threatened by the fact that one of the
authors is involved in the object of the study, resulting in a possible bias in our obser-
vations. However, the observations were made during a period of several months in
which the model execution was actively designed. Our observations were reviewed
and commented on by other team members involved. The descriptions of the ob-
servations, and the described requirements and decisions were correctly described
according to these comments.

The external validity of our research is threatened because our case study is done
at a single company. The observations, however, were done over an extensive period
of time, and the results were discussed with the team. We argue that the conclusions
and observations are in line with existing literature. The decision support framework,
however, should be further strengthened by additional case studies.

Section 6.8 — Conclusion | 153

6.8 Conclusion

We present two contributions to the research on MDD, and in particular to the devel-
opment of MDEEs. The survey in Section 6.3 illustrates that there is a lack of guidance
and knowledge for SPOs. Although the SPOs show that indeed many forms of model
execution approaches are used, they do not have an explicit rationale for their design.

In Section 6.4 we studied and summarized existing literature to correlate quality
characteristics with the model execution approach. Although this knowledge was al-
ready available, it was scattered over many papers. Our study makes the experience
and knowledge of many authors available to MDD researchers and practitioners. We
summarized the results in Table 6.3, which can be used as a reference in the design of
a fitting model execution approach. In Section 6.5 we demonstrate how these results
can be used as input for the decision-making in selecting alternatives.

The second contribution that we present is the decision support framework as pre-
sented in Section 6.6. With this framework, SPOs have a structured process for the
design of the model execution approach. By making these design decisions explicit,
and by adding the results from Table 6.3 as input to the decision-making process,
SPOs can design the best fitting execution approach. The influence of the context of
the MDEE as shown in Section 6.6, and the interplay between existing design decisions
and the model execution approaches is made explicit and can lead to better designs.

Although we are not able to relieve SPOs from the hard work of designing a model-
driven engineering environment, we argue that our research brings them closer to
the best fitting design. By making existing knowledge and experience accessible, the
solutions in the decision-making process can be assessed with more confidence. In
Section 6.3 we show that many SPOs already use a hybrid form of model execution,
but do not have a strong rationale. However, our research also uncovers the need for
more empirical research to support SPOs in the design and development of MDEEs.
Table 6.3 is primarily based on anecdotes, and often not backed by real evidence.
Experiments and case studies should be conducted to strengthen the evidence used in
our decision support framework. The framework itself is created by observing a single
SPO designing a model execution approach, and it should be evaluated by applying it
to other SPOs.

Many questions in the design of software can be answered with “it depends", leaving
the questioner puzzled as to what he should do. We present how the context of the
MDEE influences the design of a model execution approach for MDEEs. Existing design
decisions determine the priorities of quality characteristics, which in term steer the
design of the model execution approach. We also show how SPOs can utilize the
knowledge presented in this paper to allow them to steer their design process towards
the most fitting model execution approach.

Acknowledgements

The authors like to thank Jurgen Vinju, Tijs van der Storm, and their colleagues for
their feedback and knowledge early on in the writing process. Finally we thank the
team at AFAS Software for their opinions, feedback, and reviews.

Proposing a Framework for Impact
Analysis for LDCPs

Low-code development platforms accelerate software development by facilitating
end-user programming. Through higher-level abstractions citizen developers are
enabled to develop increasingly complex software systems. While this improves
productivity and efficiency it also introduces new challenges in the development
process.

The evolution of the low-code development platform and the applications built on
top of it is one of those challenges. Understanding the impact of changes on the
software system is crucial for both the maintenance as well as the improvement of
running software. Citizen developers can be supported by direct feedback that re-
flects how their changes impact the system. Professional developers can use impact
analysis to correctly migrate existing data. Finally, the operations engineers that
are responsible for the availability of the platform and the applications can plan
seamless upgrades of new versions. Impact analysis should be at the foundation
of the development of low-code development platforms.

This paper proposes the Impact Analysis for Low-Code Development Platforms
framework, a conceptual framework that supports the discussion, research, and
implementation of impact analysis. The proposed framework describes the dif-
ferent subsystems and artifacts in a low-code development platform, the different
types of professionals involved, and how these professionals can use impact anal-
ysis to support their engineering decisions. Through a descriptive case study we
discuss the role of impact analysis in an industry low-code development platform.
Through the feedback acquired by impact analysis, professionals can stay in con-
trol of the evolution of both the applications as well as the low-code development
platform itself.

This work was originally published in MODELS 21: Proceedings of the 24thACM/IEEE Inter-
national Conference on Model Driven Engineering Languagesand Systems: Companion Proceedings
(2nd LowCode Workshop), titled ‘Proposing a Framework for Impact Analysis for Low-Code De-
velopment Platforms’. It was co-authored by Slinger Jansen.

156 | Chapter 7 — Proposing a Framework for Impact Analysis for LCDPs

7.1 Introduction

A trend that is still growing and gaining traction is low-code development platforms
(LCDPs) [28]. These LCDPs facilitate end-user programming for citizen developers,
people without formal programming education that develop software, through Model-
driven Development (MDD). Ultimately, the goal of these platforms is to enable citizen
developers to build full-stack software applications [217].

While this may have started with relatively simple applications that automated one
task, the applications targeted by LCDPs are becoming increasingly complex. From
enterprise services [281], Internet of Things [189] to the enablers of digital transfor-
mations in the manufacturing industry [219]. This growth and evolution of LCDPs
into supporting more different kinds of systems and more complex systems also give
rise to new challenges. Challenges that were once the domain of software engineers
and operations engineers' are now becoming challenges for these citizen developers.

Software evolution is one of these challenges. While it starts with the design, devel-
opment, and release of an application built with an LCDP, the citizen developer will
quickly become aware of the challenge of software evolution. As these applications
grow and become more complex, companies will depend more and more on them.
Quality characteristics of these applications become more important, and the impact
of changes needs to be predicted before they are made, or released into production.
However, software evolution for the professional developer and operations engineer
also becomes more challenging. A large part of the applications is developed by a new
type of professional, the citizen developer. The professional developers and operations
engineers are not always aware of the changes made by the citizen developers as they
might be part of a different team, or even a different company.

Impact analysis provides all three types of professionals with the needed feedback.
The analysis of how changes impact other parts of the system and the running ap-
plications supports the professionals in making engineering decisions. We propose a
framework to support the discussion and research of impact analysis in low-code de-
velopment platforms. First we describe the three types of professionals (citizen and
professional developers and operations) involved, the subsystems of an LCDP, and
the involved artifacts. The Impact Analysis for Low-Code Development Platforms itself
comprises of the execution of change analysis, the collecting of change analysis re-
sults, and the deduction of impact observations that are presented to the involved
professionals. Through a case study we show how this framework can be applied, and
how impact analysis can result in feedback for those professionals involved in the de-
velopment of LCDPs and applications. We report on a decade of development of an
industry LCDP and application, with 18 months of operational usage. Different forms
of impact analysis are used to facilitate control over the evolution of the system and
support engineering decisions made by the involved professionals.

The research approach is explained in Section 7.2. In Section 7.3 we discuss LCDPs
in general and propose the Impact Analysis for Low-Code Development Platforms frame-

IDifferent titles are used for these roles, such as ‘DevOps engineers’, ‘Platform Engineers’, and ‘Site
Reliability Engineers’. We use the term operations engineers to refer to the people and/or teams that are
responsible for technical management and maintenance of software systems running in production.

Section 7.2 — Research Approach | 157

work. The case study is described in Section 7.4 and analyzed in Section 7.5. Sec-
tion 7.6 discusses the case study, the research, and future work. Related work is
discussed in Section 7.7. Our conclusions are stated in Section 7.8.

7.2 Research Approach

In this research the role of impact analysis in a low-code development platform (LCDP)
is discussed. A descriptive case study is conducted at AFAS Software, during the devel-
opment of an industry LCDP. The LCDP is used to develop a new ERP system. Currently
the platform itself is used only internally, while the resulting ERP system is offered as
a Software-as-a-Service (SaaS) product. The research and development of the LCDP
AFAS Focus started in 2010, but a separate development team was not created until
2013. From 2013 until 2019 the development team grew from 10 people to 50 people,
including citizen developers, testers, and professional developers. At the end of 2019,
the first customers went live in a private beta program, and in the second half of 2021
the product was publicly launched.

The first author has been part of the research and development team at AFAS Soft-
ware since 2011, first as Software Architect, but from 2013 as a Lead Software Ar-
chitect. During the development of the LCDP, the first author was jointly responsible
for the development of the LCDP architecture, the data conversion techniques, and
the upgrade strategy. The second author has been involved in the project as an inde-
pendent external researcher since 2015. Our research is based on observations and
contributions made by the first author during the development of AFAS Focus. The
challenges, the proposed framework, and the results are discussed with the second
author since the start of the involvement of the second author. These discussions have
bent the inward look from AFAS Focus to LCDPs in general. The research and devel-
opment of AFAS Focus has resulted in contributions such as a comparison of model
execution [182], a framework for data migration [186], and a maturity model for API
management that is applied to LCDPs [183]. The Impact Analysis for Low-Code Devel-
opment Platforms framework presented in Section 7.3 is based on the acquired knowl-
edge, research contributions, and experience accumulated throughout these years.

7.3 Impact Analysis for Low-Code Development Platforms

LCDPs accelerate the development of applications by decreasing the amount of hand-
coding required [28]. This is accomplished by making software development easier
by raising the abstraction level through model-driven development. The higher ab-
straction label also makes it possible to develop software for people without a formal
software development background: the citizen developer. These citizen developers are
trained professionals with domain knowledge that are enabled to develop solutions for
their domain-specific problems.

The Impact Analysis for Low-Code Development Platforms framework is depicted in
Figure 7.1. It comprises of the execution of change analysis, the collecting of change
analysis results, and the deduction of impact observations that are presented to the
involved professionals. We distinguish three types of professionals involved in the

158 | Chapter 7 — Proposing a Framework for Impact Analysis for LCDPs

Citizen Platform
developers developers

Types of
‘ ‘ ‘ professionals

Operations

Impact
observations Model designer Platform Subsystems
and artifacts

h
Deployed on

h
\
:
\
Meta-model . Exports i : Runtime
|
v A :

'
Conforms to
" — Model el . Run-time model
transformations

Change Ana/ysis

Change
Meta-model Model diff ransformation Run-time Platform diff analysis
diff diff model diff results

Figure 7.1: The Impact Analysis for Low-Code Development Platforms framework comprises of
the execution of change analysis, the collecting of change analysis results, and the deduction of
impact observations. Changes occur in different parts of the system, but are collected through
the change analysis. The resulting changes are represented in diffs. These diffs can be analyzed
for impact, resulting in impact observations. The results of impact analysis are used to inform
the professionals. They can use this feedback to improve the platform, to redesign existing
solutions, or decide to revert certain changes. Furthermore, team coordinators can use the
impact framework to orchestrate the process of LCDP evolution.

impact analysis. First of all, the citizen developers, who uses the LCDP to develop
applications. Secondly, the LCDP developers, responsible for the development of the
LCDP itself. Finally, the operations engineers are responsible for keeping the applica-
tions and LCDP available and responsive. The general structure of an LCDP consists
of three subsystems and three types of artifacts. These subsystems and artifacts are
analyzed for changes, resulting in change analysis results, in the form of diffs. These
diffs result in impact observations that inform the professionals and support their en-
gineering decisions. The evolution of the LCDP and the applications can be controlled
through the created feedback. The remainder of this section explains the subsystems
and artifacts, and the impact analysis process in more detail.

The first subsystem is the model designer. The designer is the Integrated Develop-
ment Environment (IDE) offered to the citizen developer. It provides an interface for
the development of the model(s) and includes help, and feedback. The first type of

Section 7.3 — Impact Analysis for Low-Code Development Platforms | 159

artifact is the meta-model. The meta-model describes the model elements and thus
the capabilities of the model. An LCDP can utilize multiple models, and thus multiple
meta-models, targeting different aspects of an application, such as the data, the busi-
ness logic, and the user interface. The designed models are the second type of artifact.
These are parsed, processed, and transformed by the model transformations subsys-
tem. This system transforms the model into a run-time model. The run-time model
can take different forms, depending on the LCDP implementation. It could either be
an intermediate model specific to the LCDP, or a general purpose model (or program-
ming language). The platform subsystem contains all the features and infrastructure
necessary to execute the run-time model. It contains service frameworks, data access
libraries, and other functionality present in the resulting application that is not depen-
dent on the model. The platform and run-time model are deployed to the runtime that
executes the two subsystems.

Changes are collected by analyzing the subsystems and artifacts in an LCDP. This
is done before these subsystems and/or artifacts are deployed on the runtime. The
results are expressed in change analysis results, representing the changes made, and
are generally expressed in a diff. From these results the impact that changes have on
the system can be derived. The impact observations support the professionals in mak-
ing engineering decisions on the evolution of the LCDP and the applications. These
observations can block the release of new versions, or adjust the future roadmap.

The specifics of the change analysis, the representations chosen for the change re-
sults, and the impact observations are LCDP specific. Therefore the remainder of this
section will give examples to illustrate the process expressed in the Impact Analysis
for Low-Code Development Platforms framework. These examples are given by revis-
iting the three types of professionals that are responsible for the development and
operations of the applications developed on the LCDP and the LCDP itself.

First, the point of view of citizen developers who use the LCDP to create solutions is
taken. In commercially offered LCDPs these developers are the customer, or work for
the customer, of the LCDP. They use the model designer as the primary way of interact-
ing with the LCDP. It allows them to create an application by expressing their solution
constrained by the meta-model offered by the LCDP. To facilitate rapid application de-
velopment, technical details will be hidden from them. Citizen developers can, based
on impact observations, receive feedback on the quality of the model(s) that they have
developed. An example is given: A change to the model leads to a far bigger change in
the run-time model, because a specific model element represents a complex piece of run-
time functionality. There is, however, a different solution possible that solves the problem
and leads to a smaller change in the run-time model. This solution has preferable char-
acteristics: a smaller impact on the running application. This impact observation is gen-
erated by analyzing the model diff and the run-time model diff, and linking the changes
made to the model to those in the run-time model. In general the change results can
be analyzed by specific rules, maybe a recommender system [3, 144] could be used,
and suggest alternative solutions. Such a system requires the knowledge to link model
changes to run-time model changes and to characterize these changes depending on
their impact on the runtime by incorporating Software Operational Knowledge.

Secondly, we take the viewpoint of the LCDP developers, who develop and maintain

160 | Chapter 7 — Proposing a Framework for Impact Analysis for LCDPs

the three subsystems in an LCDP. The LCDP developers can use the feedback to opti-
mize the platform for both the citizen developers and the operations team. Model
changes can be analyzed to identify features that are either neglected or popular.
These observations can then be incorporated in the roadmap to optimize the meta-
model and the designer. Meta-model changes can be analyzed to find the places in
the designer impacted by these changes. The run-time model and platform changes
serve as the source for the runtime impact analyses. This analysis points to parts of
the system that could harm the operational characteristics of the application. These
changed parts can then be reverted before releasing the new version.

Finally, the operations engineers’, who are responsible for keeping the applications
and LCDP available and responsive, viewpoint is taken. If the LCDP is an internal plat-
form, such as in our case study, there will be a single group of operations engineers.
However, if the LCDP is a commercially offered solution there will probably be two
groups of operations engineers. The operations engineers that support the platform
itself are responsible for the availability of the LCDP: the model designer, the model
transformations, and the runtime. The operations engineers that are part of the cus-
tomer company will focus on the availability of the applications, using the features
offered by the LCDP to do so. This team supports the release of new versions, while
monitoring the running environments. These operations engineers benefit from the
impact observations in planning the upgrades of the platform and/or new applica-
tions. The run-time model and platform changes can tell them if they require more
runtime resources.

The proposed framework describes the process of impact analysis for LCDPs in
generic terms. LCDP providers and consumers should instantiate this framework for
their own specific case. However, the taxonomy for software change impact analy-
sis [153] can help. The taxonomy lists eight criteria to classify impact analysis ap-
proaches.

+ The scope of the analysis: does the impact analysis operate on code, models, or
other artifacts. The framework focuses on static analysis of code and models,
and does not incorporate dynamic aspects collected from a running system.

o The granularity of the analysis: what level of detail is analyzed and reported.
Collected changes can be aggregated, or only collected on a certain level. This
determines the impact observations that can be made.

+ The utilized technique: examples of techniques are call graphs, execution traces,
and message dependency graphs. The best fitting technique depends on the kind
of LCDP and its architecture.

+ The style of the analysis: is the analysis global, search based, or exploratory.

+ Tool support: which tools support the chosen approach.

+ Supported languages: which programming or modelling languages are supported
by an approach. While the model in an LCDP is custom developed, providers can
benefit from standard tooling for language and model engineering. The run-time
model could also be a standard programming language or intermediate model
that is supported by available tools.

o Scalability: how scalable is the impact analysis approach.

Section 7.4 — Case Study | 161

+ Experimental results: is the approach tested and shown to be successful.

These criteria list the variability present in the Impact Analysis for Low-Code Develop-
ment Platforms framework. LCDP providers and consumers need to choose an existing
approach or design their own approach for impact analysis when applying the frame-
work.

7.4 Case Study

We conduct a case study on how impact analysis is applied in an industry LCDP at
AFAS Software. This case study describes the process in which impact analysis is
applied and from which we derived the Impact Analysis for Low-Code Development
Platforms framework. AFAS Software is a Dutch vendor of ERP software based in
Leusden, The Netherlands (with additional offices in Belgium, Curacao, and Aruba).
The privately held company currently employs over 500 people and generated 191
million of revenue in last year (2020). AFAS’ main software product is called Profit,
which is an ERP system consisting of different modules such as Taxes, Finance, HRM,
Order Management, Payroll, and CRM. This product has over 2 million users across
11.000 organizations of all sizes, ranging from companies with a single employee to
companies with thousands of employees.

After 25 years of development, AFAS launched a new version of its ERP system,
which is called SB+. This new system is based on an internal developed LCDP, called
AFAS Focus, using an ontological enterprise model [228] (the platform was formerly
called NExT). The system is cloud-based and its architecture applies event sourcing
and CQRS [187] to satisfy quality characteristics such as availability and responsibility.
The research and development of AFAS Focus started ten years ago. Approximately 60
companies currently use SB+ for their day-to-day accounting. Figure 7.2 shows the
instantiated Impact Analysis for Low-Code Development Platforms framework for AFAS
Focus.

7.4.1 Involved Professionals

The AFAS Focus LCDP is developed and utilized by AFAS only, the three types of profes-
sionals described in Section 7.3 are all employees of AFAS. The citizen developers are
a team of professionals who formerly served in roles such as business analyst, software
tester, or support engineer. They have multiple years of experience in the domain of
ERP software, but have no formal training in software development. Through internal
training and knowledge sharing sessions they are trained in the usage of the LCDP.
The LCDP developers consist of four teams that are responsible for the development
of the model designer, model transformations, and platform. Finally, a team of opera-
tions engineers is responsible for maintaining the runtime and deploying upgrades of
AFAS Focus. AFAS Focus uses a four-weekly release schedule: every four weeks a new
release is developed, tested, and deployed. During the four weeks that a release is
in production, smaller releases (called hotfixes) are deployed to solve blocking issues.
In the first 18 months (January 2020 to June 2021) that AFAS Focus was used by
companies for their day-to-day accounting 212 releases (18 regular releases and 194
hotfixes) were deployed.

162 | Chapter 7 — Proposing a Framework for Impact Analysis for LCDPs

Citizen LCDP
developers developers

s NHRiisds i

Operations

Impact
observations Studio @ P--------mcmeeeaao Platform
!)
Deployed on Runtime /
v Microsoft Azure
'
' 1

'
Confi tc)) icati
onforms o _| ? ERP-model Generator Application Ij
' package

OEM B Exports

I
< OEM diff > < Mergelog > éceablllty Im} <Component graph>

Figure 7.2: The Impact Analysis for Low-Code Development Platforms framework as instantiated
for AFAS Focus.

7.4.2 Subsystems and Artifacts

AFAS Focus is developed using C# on the .NET platform and TypeScript. As men-
tioned, an ontological enterprise model [228] is used to develop the ERP system on
top of this platform. The LCDP developers are responsible for the model designer,
called Studio and the meta-model, called OEM. Required features are designed and de-
veloped in collaboration with the citizen developers, who are the ‘customers’ of these
components. The model is created through the combination of a graphical designer
and a text-based designer. Through a suite of model transformations (the Generator),
this model is transformed into a run-time model called the application package. To op-
timize the model execution approach, AFAS Focus adopted a custom run-time model
that is interpreted [182]. The run-time model expresses the component types present
in an event sourced system, such as aggregate roots, events, and projectors. Together
with a host package, containing the platform, the application package is deployed on
the runtime which is running in Microsoft Azure. The host package contains both the
interpreters for the run-time model, as well as features that are not dependent on the
model and are not developed by the citizen developers. Examples of these features
are generic import functionality and user management. These features are developed
using ‘traditional’ software development methods and contained in the host package.

Section 7.4 — Case Study | 163

7.4.3 Change Analysis Results

From the start, impact analysis was applied in the development of AFAS Focus to
facilitate the co-evolution between meta-model and model, and model and runtime.
We discuss the different applied impact analysis and the context within AFAS Focus.

Meta-model Diff

While currently only one single model is developed (the model representing the new
ERP system), many more models exist for testing and exploration purposes. To main-
tain compatibility between Studio and the model, the OEM is versioned and every
model contains the version to which it conforms. When a new version of the OEM is
introduced, a manual evolution step is developed to facilitate the upgrade of existing
models, based on the OEM diff. Studio itself is evolved manually. Whenever a model
is loaded that conforms to an older OEM version, the developed evolution steps are
executed to automatically upgrade the model. These evolution steps are developed
in such a way that only minimal changes are made to a model to make it conform to
the new OEM. These evolution steps are developed and tested by the LCDP developers
whenever they make a meta-model change. Downgrading a model to an older OEM is
not supported and facilitated. The citizen developers are briefed and educated on the
new OEM elements, but are not bothered by details of the evolution steps.

Model Diff

Co-evolution of the system and the customer data is one of the biggest challenges faced
in the development of AFAS Focus. For an accounting system it is crucial that customer
data remains accessible and available after an upgrade. Changes that originate from
the model were a big unknown in that challenge, because it was outside of the direct
influence of the LCDP developers.

The co-evolution of the model and customer data is solved through a combination of
manual specification and operator-based co-evolution [211], called the Mergelog. The
most frequent evolution steps in the model are mapped and formally supported in
Studio. Citizen developers can select one of the operators to perform co-evolution
with the customer data. The manual specification option serves as a fall-back for non-
supported operations. Together these make sure that the model and the customer data
co-evolves.

The model itself is versioned in a general purpose versioning system (git) using a
text-based representation. To not obscure the versioning history, the evolution steps
automatically executed in Studio caused by OEM-evolution are confined to a minimum.
The LCDP developers review the automated evolution steps in Studio to make sure that
the model history is not polluted by Studio.

Transformation Diff

AFAS Focus uses a general purpose programming language (C#) for the model trans-
formations. Initially the transformations were designed in a single multi-phase trans-
formation system. This monolithic transformation system, together with the fact that
a general purpose programming language is used, made it hard to perform change
impact analysis.

Therefore, the single transformation system was redesigned into a component-based

164 | Chapter 7 — Proposing a Framework for Impact Analysis for LCDPs

transformation system. This not only improves the development process for multiple
development teams, it also makes it easier to analyse the transformation system. Cur-
rently AFAS implements basic traceability [88] in the transformation system that links
elements in the run-time model to the specific transformation component. These trace-
ability links are used in the engineering process by the LCDP developers to find the
specific transformation components and model elements that lead to a run-time model
element.

Run-time Model Diff

The run-time model of AFAS Focus consists of a small number of component types that
exist in an event sourced architecture [187]. To analyse and observe the impact, the
run-time model is represented in a message dependency graph [195]. This component
graph contains the different micro-services and their event-based communication. A
graph of the current release of AFAS Focus consists of around 25.000 nodes and 35.000
edges. These nodes represent the components in an event sourced system: 5.000
nodes are components containing logic, 15.000 nodes represent messages, and the
remaining nodes are data objects. The edges represent the usage patterns between
these components. The graph can be explored in a visual representation. The size
of the AFAS Focus component graph is useless to visualize in one image, however, by
enabling developers to explore the graph many useful observations can be made.

To analyse the impact of changes a diff between two of these graphs is created. This
diff reflects the changes made to different component types. An example summary of
such a diff is shown in Table 7.1. The numbers in Table 7.1 show a 0.1% total size
increase. It shows per component type the number of added, removed, and changed
elements, together with the totals of the nodes and edges. Note that the edges can only
be added or removed, not changed, because they do not contain further information.
This summary information acts as a starting point to browse the diff information and
drill-down to the lowest possible level: a diff of a specific model element (as shown
in Figure 7.3). These diffs can be used to spot specific changes that need the atten-
tion of the development team. Example changes that require manual verification are
changes that require custom data evolution steps (such as a property that has become
mandatory, or a property type that is changed), or changes that could result in data
loss (such as an event type that has been removed by error).

Using the component graph the LCDP developers have found bugs, such as
+ Components receiving messages with no source component.
+ Messages that are received and sent, but for which no contract description exists.

An example of a less obvious observation is the identification of a part of the system
that has a high level of complexity (measured in terms of many different messages
and many different components involved), but that offers little functionality in return.
Parts with those characteristics are discussed in architecture meetings and optimiza-
tions are planned accordingly.

Platform Diff

The platform part of AFAS Focus contains the interpreters for the run-time model
elements as well as features that are not modelled by the citizen developers and do
not depend on the model. Similar to the transformation subsystem the platform too

Section 7.4 — Case Study | 165

Component Type | Original Added Removed Changed New
Command 3679 34 7 51 3706
Event 11005 76 84 570 10997
QueryModelObject 4797 79 91 409 4785
Streamltem 1395 12 6 273 1401
StreamItemRouter 1379 16 103 142 1292
QueryProjector 578 11 6 49 583
StreamProjector 565 0 4 230 561
Nodes 23398 228 301 1724 23325
Edges 35898 474 506 35866

Table 7.1: Example diff summary between version 1.19 and 1.20 from the combined run-time
model and platform impact analysis. The changes per component type as well as aggregated
totals are shown.

is implemented in C# . However, unlike the transformation system the platform does
not have the same challenges for doing change impact analysis. Features that are
developed in the platform subsystem use the same component and message types.
Therefore, the platform system can be represented through reverse engineering in the
same component graph as the run-time model.

Run-time Diff

The run-time model and platform diff are combined into a single run-time diff. This
diff represents the whole impact of the new release on the runtime.

The run-time diff is used by the LCDP developers to analyse the impact of a new
release and plan the upgrade procedure accordingly. The data upgrade steps are veri-
fied using the diff, making sure that all necessary upgrades are specified. Depending
on the impact of the release a separate upgrade strategy is used.

+ move - When a release only contains business logic or user interface changes, a
straightforward move upgrade can be performed. During this upgrade a new ap-
plication process is launched that connects with the same data storages. When
this new process is verified to run correctly all incoming connections are trans-
ferred to the new process. This is the fastest upgrade process.

+ minor - When a release only contains business logic, user interface, or volatile
storage changes, a minor upgrade can be performed. During this upgrade a
new application process is launched, the data storages are copied, and the data
schema changes are executed on the copy. When the new application process
is verified to run correctly all incoming connections are transferred to the new
process.

+ major - Whenever the event messages have changed, a major upgrade is re-
quired. During this upgrade the changed events are rewritten and saved into a
copy of the data storage. When the new application process is verified to run
correctly, all incoming connections are transferred to the new process.

Depending on the complexity of the changes when a major upgrade is required, the
operation engineers can decide to allocate more resources for the system during the

166 | Chapter 7 — Proposing a Framework for Impact Analysis for LCDPs

Figure 7.3: The diff of a single data storage element from the generated component graph diff.
These elements are represented in JSON, the diff shows a plain text-based diff. The diff shows
two added properties, a changed property length, and two new indexes. The changed property
length is especially important: a decrease in length requires a data evolution step to make sure
existing data conforms to the new schema. This feedback could be presented in Studio to warn
the citizen developer.

upgrade. Specific upgrade challenges are identified and reported to the operations
team.

One metric that can be used to measure the size of the ERP system SB+ is the total
number of components and relations between the components. Table 7.2 shows an
overview of the numbers of the last nine versions. These numbers give a sense of
the magnitude of the ERP system, however, similar to source code lines the number
of components does not relate to productivity. The decrease of 8% between version
1.15 and 1.16 for instance can be attributed to an optimization in the transformation
system. These numbers can be used by the LCDP developers and operation engineers
to plan the available resources on the runtime platform: more data storage objects
require more data resources, while a larger number of components with logic require
more memory resources.

The LCDP developers also analyse the run-time diff to identify required optimiza-
tions in platform and model transformations. Together with the citizen developers
the diff is analyzed to identify optimizations in the model by applying different meta-
model elements, or by introducing new meta-model elements.

Taxonomy criteria

Following the eight criteria of the taxonomy for software change impact analysis the
approach can be described as follows:

o The scope: analysis is done on code and models.

Section 7.5 — Analysis | 167

. Nodes Edges

Version

Total % change Total % change
1.11 18104 26202
1.12 18499 +2% | 26935 +2%
1.13 19431 +5% | 28205 +4%
1.14 20638 +6% | 29955 +6%
1.15 21814 +5% | 32034 +6%
1.16 20132 -8% | 29711 -8%
1.17 23819 +18% | 36428 +22%
1.19 23398 -2% | 35898 -2%
1.20 23325 -1% | 35866 -1%

Table 7.2: The last nine releases of AFAS SB+ with total numbers of nodes and edges of the
component graph, enriched with the percentage of change with respect to the previous version.
Due to problems with the release of version 1.17, version 1.18 was never released, therefore it
is absent in this table.

o The granularity: this differs for the different analyses, the OEM diff and the
required evolution operations are done on all levels, the mergelog is recorded on
the level of attributes, the traceability links are recorded on the level of generator
components, and the component graph is created on the level of the architectural
components.

+ Utilized techniques: analysis is done by traceability links, message dependency
graphs, and model diffs.

+ Style of analysis: the impact analysis in AFAS Focus is done globally.

+ Tool support: no generic or open source tools are used.

+ Supported languages: the implemented approaches are specific to the meta-model
and architecture of AFAS Focus.

+ Scalability: scalability is no real concern, because there is a single model and the
analysis is executed on demand.

+ Experimental results: these are discussed in this research.

7.5 Analysis

The previous section described how impact analysis is embedded in the software de-
velopment process of AFAS Focus. However, we also observe possible improvements.

The meta-model diff is used to manually create model evolution steps. This cre-
ation could be automated by analyzing the meta-model diff. The meta-model diff
could also be used to automate the evolution of the model designers. These two im-
provements would make the process of meta-model evolution more efficient.

The chosen solution for co-evolution of model and customer data, based on the
model diff, serves its intended purpose, but also has a number of drawbacks. First
of all, the chosen approach remains laborious and complicated. Citizen developers
are required to explicitly specify evolution operators. However, they are only aware

168 | Chapter 7 — Proposing a Framework for Impact Analysis for LCDPs

and capable of specifying their own evolution. Changes of several developers are
combined into a single release, but how the different evolution operators influence
and even conflict with each other is not obvious and cannot be specified. Second,
the operator-based co-evolution is only able to express model evolution. Changes in
the meta-model, the model transformations, or in the platform cannot be expressed
through these operators. Each of those cases needs to be expressed through manual
specification, making the process error-prone and laborious. Third, the co-evolution
does not support the teams in improving the solutions by providing feedback. It does
not facilitate the evaluation of the chosen model changes, which might not be optimal.

While the transformation system already generates traceability between the trans-
formation components and the run-time model, it misses a link between the model
element and run-time model element. Such a link would facilitate the translation of
run-time errors into model errors for the citizen developers.

The run-time diff, the combination of platform diff and run-time model diff, greatly
improves the impact analysis of AFAS Focus. However, this artifact is also not yet uti-
lized to its full potential. It could replace the model diff and serve as a basis for the
data evolution steps. As the run-time diff represents the full evolution step it would
allow for a more complete and more automated generation of the required data evolu-
tion steps. From the 209 releases that AFAS Focus had, 37 required a major upgrade.
Most of these major upgrades required a data evolution step that could not be auto-
matically generated with the current operation based co-evolution. Example manual
specifications are property type transformation, specific calculations for introduced
mandatory properties, and renames of event types. Another improvement would be a
better suited representation of the generated component graph for the citizen devel-
opers to analyse. The traceability between run-time model and model elements could
support such a representation. Applying change patterns [265] could be another so-
lution to improve the representation by summarizing smaller changes in higher-level
change patterns. An important missing feature is safety guards against public APIs.
Earlier research [183] showed the importance of API management for LCDPs. Safety
checks on these published APIs support the citizen developer in these tasks. Finally,
the diff should be used to generate the required data evolution in a semi-automated
way. Certain semantics of the model evolution will be lost through the indirection of
the impact analysis, because it is done on the run-time model. This could either be
mitigated by also analyzing the model impact, or by manual specification.

7.6 Discussion

LCDPs enable citizen developers to develop increasingly complex software without
formal software development training. While this improves productivity and efficiency
it also introduces new challenges in the development process. The evolution of the
LCDP and the applications built on top of it is one of those challenges. Impact analysis
can play an important role in the mitigation of this challenge.

As we have observed and experienced in the development of AFAS Focus, impact
analysis supports the professionals in the planning and orchestration of software evo-
lution. The presented Impact Analysis for Low-Code Development Platforms framework

Section 7.7 — Related Work | 169

offers a conceptual structure to reason about impact analysis for LCDPs. At AFAS
Software the framework proved its use in the design of the different subsystems and
artifacts, and the implementation of impact analysis. The development process bene-
fits from the different analysis results, even with the identified improvements.

Current research in model-driven development and low-code development plat-
forms offer a lot of the lower-level techniques and approaches to perform impact
analysis. However, an overall framework to structure the plan-do-act process of engi-
neering teams is missing. Our research is a proposal for such a framework but requires
more grounding and evaluation. While we believe that it can be generalized to other
contexts, this should be proven by further research.

For future work we plan to execute a systematic literature review to ground the
framework in existing research on model-driven development, low-code development
platforms, and change impact analysis. The review should result in a comprehensive
overview and concept definitions that would bring together the different research ar-
eas.

Second, the framework itself will be validated with other LCDP providers. Case
studies at other LCDP providers are necessary to evaluate the framework and correct
it from any biases. To prevent the framework from following the biases of a single
provider, multiple providers should share and combine their knowledge. We plan to
conduct multiple case studies in the near future.

The results of the literature review and the multiple case studies will be used to add
more detail to the framework: specific guidance and useful techniques that can be
applied. After these improvements the framework can be evaluated on completeness
and usefulness through expert interviews.

7.7 Related Work

Co-evolution in model-driven development platforms is a well researched topic. An
overview of the different approaches is given by Rose et al. [211], while Limmel [148]
describes and discusses coupled transformations. An approach for creating model diffs
is presented by Toulmé [249]. Gruschko, Kolovos & Paige [100], Cicchetti et al. [36],
and Di Ruscio, Limmel & Pierantonio [58] describe approaches for (semi-)automated
co-evolution of meta-model and models. Gruschko, Kolovos & Paige [100] categorizes
the meta-model changes in non-breaking changes, breaking and resolvable changes, and
breaking and unresolvable changes. By using high-order transformation rules, the sec-
ond category can be used to automatically adapt models to new meta-model versions.
The research of Wachsmuth [262] is similar and also focuses on the automated adap-
tion of models to meta-models. A dynamically adapting system is proposed by Fer-
reira, Correia & Welicki [80]. Impact analysis to support the incremental execution of
model transformations is another application proposed by Hearnden, Lawley & Ray-
mond [104]. A megamodeling approach is presented by Iovino, Pierantonio & Mala-
volta [117], which supports the capturing of change impact in a model. By doing this,
change impact becomes a model itself, which allows the application of model-driven
tools to the challenge of change impact.

The problem of representation of change impact is researched in the area of change

170 | Chapter 7 — Proposing a Framework for Impact Analysis for LCDPs

patterns. Change patterns express changes to a process on a higher level of abstrac-
tion, making them easier to comprehend. This notion is introduced by Rinderle-Ma,
Reichert & Weber [208] and Weber, Rinderle & Reichert [264] for Process-Aware Infor-
mation Systems (PAIS). The authors applied these change patterns to assess the level
of change support in different PAIS. The patterns form a language that allows an easy
and comprehensible comparison of the different systems.

Distributed event-based systems pose another challenge in impact analysis. Com-
ponents in event-based systems are intrinsically loose coupled, which makes them
hard to evolve and analyze. Tragatschnig, Stevanetic & Zdun [250] use the notion
of change patterns to analyse event-based systems. Their research shows that change
patterns are an efficient language to capture the evolution of an event-based system.
Popescu et al. [195] propose a static analysis that analyses distributed event-based
systems. Analysis of traditional software systems depends on the explicit invocation
to create a dependency graph. Their proposed method analyses the message-oriented
middleware that these systems are based on and creates a dependency graph from
those results.

7.8 Conclusion

Low-code development platforms (LCDPs) accelerate the development of software
through new abstractions that remove many of the technical details. However, chal-
lenges such as software evolution remain. Citizen developers, LCDP developers, and
operations engineers need tools and processes to solve these challenges. Together
these professionals, regardless if they are from the same company or not, are respon-
sible for the success of the application of the LCDP. Evolution plays an important role
in that success and this requires that these professionals collect feedback that informs
and supports their engineering decisions. We believe that impact analysis helps and
supports these teams in reaching their goals.

An overall framework to structure the implementation of impact analysis for LCDPs
is missing. In Section 7.3 we propose the Impact Analysis for Low-Code Development
Platforms framework that conceptualizes the process of impact analysis for LCDPs. It
describes the different subsystems and artifacts, together with the process of impact
analysis. Using the taxonomy of Lehnert [153] we discussed the variability in the
framework and how providers can implement this.

Through a case study of an industry LCDP we explore the framework in more depth.
Although case studies at other LCDP providers are necessary to evaluate the framework
and correct it of any biases, we believe that impact analysis within LCDPs can improve
both the applications developed on top of the LCDP as well as the platform itself.
Impact analysis should be at the foundations of the LCDP development process.

Part V

Conclusion

Conclusion

We begin this chapter by answering our research questions, starting with the individual
sub-questions and then following with the main research question. Furthermore, in
this chapter we reflect on the contributions of the dissertation, and discuss future
work.

8.1 Answers to the Research Questions

8.1.1 Event Sourced Systems and Evolution

Chapter 1 introduces event sourcing as a data modelling approach and architecture
pattern that emerged from the Domain-Driven Design (DDD) community [275]. The
subtitle of the seminal book on DDD by Evans [74], “Domain-Driven Design”, reads
“Tackling Complexity in the Heart of Software”. The DDD methodology and commu-
nity attempt to tackle the complexity of software systems by fostering domain under-
standing through collaboration. Event sourcing is a pattern that, according to the
methodology, matches this approach by focusing on the events that happen within
business processes.

Four sub-questions directed our research on event sourced systems, focusing on the
evolution of event sourced systems while also discussing the pattern in general. While
we can confirm that this pattern can be applied to fight complexity in large software
systems, we also recognize that it brings its own set of challenges. The challenge of
evolution in event sourced systems is discussed in detail, the other challenges are left
for future work.

SRQ1.1 - What types of systems apply event sourcing and why?

The overview of the 19 systems presented in Chapter 3, detailed in Tables 3.2 and
3.4, shows that event sourcing can be applied in systems of any size: both smaller
and larger systems benefit from the pattern. Our primary interest lies in the large
and complex systems with millions (or even billions) of events per month, but our
interviews support the claim that all of these systems, both large and small, have
benefited from event sourcing. As one engineer stated, underlining this conclusion, “I
have never seen an event sourced system that was rewritten to a system with traditional
current state storage.” The event sourcing pattern is not tied to a specific type of
functional domain, but is applied in many different domains.

174 | Chapter 8 — Conclusion

Our study identified four reasons for event sourcing: audit, flexibility, complexity,
and trending. The rationale audit traces back to the common characteristic of event
sourcing: the immutability of the events. However, we determined that not every sys-
tem applies strict immutability, but that there are actually three levels of immutability
that engineers apply, namely strict, cut-off moments, and mutable. Flexibility is seen
in the fact that the events can be used both as a means of communication between
different modules and as a source for different types of data models. Event sourcing is
especially suited for software systems with complex temporal logic, but also supports
the implementation of distributed systems. A final reason identified during the inter-
views is that event sourcing is trending and new, and that engineers like to try out new
techniques.

SRQ1.2 - How should event sourced systems be defined?

We extracted a definition of event sourced systems (ESSs) from the interviews con-
ducted for the research in Chapter 3. We gave a complete overview of ESSs based on
these definitions, combined with our (at that time) five years of experience. We repeat
the key definitions of events and the event store.

Event. An event is a discrete data object specified in domain terms that represents a state
change in an ESS.

Event Store. An event store is a set of event streams. These streams form the partitions
of the event store and are disjoint.

Furthermore we define the project function, that consumes stored events to create

projections. These projections are used to validate new information and to retrieve
stored information.
Project function. The project function takes one or more event streams and creates a pro-
jection with the data from the given events. The projection itself can take different forms;
for instance, it can be a relational database that is updated through SQL statements, or
a search index manipulated through the filesystem.

Based on the different perspectives discussed by the engineers we added nuance
and variation options to the different presented concepts. Section 3.5 presents the
definitions in detail.

SRQ1.3 - How should event sourced data structures be evolved?

In Chapter 2 we presented the event store upgrade framework. This framework
starts with a common language of different event store upgrade operations that can
be used to analyze the required upgrade. Based on the operations a matching upgrade
technique and strategy should be selected, while finally a matching strategy should be
selected. The framework makes the trade-offs explicit, supporting both a utilization
as decision support as well as an automated selection that can be implemented. The
framework summarizes best practices from literature and industry, and was validated
by three experts.

In Chapter 3 we discussed the different event schema evolution techniques with
the interviewed engineers. They all had experience with multiple techniques that are
often combined in a single system. This affirms the event store upgrade framework
that correlates the techniques to the different operations. The framework is further
elaborated on with the benefits and the liabilities of the different techniques. We

Section 8.1 — Answers to the Research Questions | 175

discussed five event schema evolution techniques in Section 3.7: versioned events, weak
schema, upcasters, in-place transformation, and copy-transform. The technique lazy
transformation presented in the framework was not mentioned by the engineers, while
weak schema was mentioned but not present in the framework.

The majority of the interviewed engineers had experience with multiple techniques,
often combining them in a single system. As all techniques have their benefits and
their liabilities, we did not find a single technique that would be applicable in all
scenarios. However, through the framework presented in Chapter 2 and the advice
formulated in Chapter 3 we provide the tools to help engineers in choosing the most
suitable techniques.

SRQ1.4 - What are the challenges faced by software engineers in applying
event sourcing?

We discussed five challenges experienced by the interviewed engineers in Section 3.6.
The steep learning curve was addressed by our description of event sourced systems
through the presented definitions and operations. These can be used in discussing
and teaching of ESSs. Evolution of event sourced systems is discussed in detail in both
Chapter 2 and Section 3.7. The other three challenges, lack of technology, rebuilding
projections, and privacy, are presented as a start for a research roadmap. We call for
researchers to explore these challenges further.

MRQ1 - What are the challenges software architects face in the evolution of
event sourced systems and how can they be mitigated?

We have shown that the challenges that software architects face in evolving event
sourced systems are caused by, among other things, the assumed immutability of event
stores, the implicit schema embedded in the system, and the performance of data
migrations. To support architects with the challenge of immutability, Chapter 3 dis-
tinguishes three levels of immutability in event sourced systems. These three levels
determine the possible event schema evolution techniques that software architects can
apply. The central answer to this question, however, is the available event schema evo-
lution techniques that we present, including benefits and liabilities. This overview
enables software architects to decide which would best meet their requirements based
on their context. Chapter 2 presents the techniques in the form of a framework, further
supporting the architects in their choices.

8.1.2 API Management in Software Ecosystems

Both software systems in a software ecosystem as well as modules in a single large sys-
tem have the need to communicate with each other. Communication happens through
Application Programming Interfaces (APIs), which can be realized by different tech-
nologies. In the microservice architecture style, APIs are preferred over HTTP proto-
cols. To maximize the value of their APIs, Software Producing Organizations (SPOs)
need to evaluate and improve their API management capabilities as needed.

SRQ2.1 - How should SPOs that expose their APIs to third parties evaluate

their API management practices?

In Chapter 4 we present the API management focus area maturity model (API-m-

176 | Chapter 8 — Conclusion

FAMM), a new framework that captures the topics and processes API management
consists of. The API-m-FAMM is a focus area maturity model that enables SPOs to as-
sess their current API management practices. After establishing their current maturity,
the model offers a path for improvement in various areas. The model improves the
transparency and availability of API management assessment frameworks and tools
by constructing, evaluating and validating a publicly available framework scientifi-
cally grounded and validated in industry. The API-m-FAMM was successfully deployed
in practice with minimal involvement of the researchers using the constructed do-it-
yourself kit.

SRQ2.2 - How mature are the API management capabilities that LCPs offer

to their customers?

In Chapter 5 we use the API-m-FAMM to evaluate four Low-Code Platforms (LCPs).
We conclude that these LCPs support around half of the practices described in the
API-m-FAMM but leave the other practices to be implemented by the customers of the
LCPs. From the four LCPs, only Mendix places API management firmly on its roadmap.
The other platforms defer much of the work to either third-party vendors or the LCP
customers.

We suspect that LCP providers will soon be challenged in providing capabilities that
enable citizen developers to transform their applications into platforms. However, our
research shows that LCP providers are currently unable to support such capabilities
for citizen developers and require technical staff to implement such architectures and
mechanisms through either third-party solutions or custom solutions built on top of the
LCP. We concluded that as LCPs are becoming more powerful, they can use the API-m-
FAMM to evaluate and update their roadmaps. Finally, we identified five engineering
challenges that, if solved, will create a next generation of citizen developers who
can independently create complete software platforms and software ecosystems, and
subsequently manage them without the requirement for highly specialized technical
knowledge.

MRQ?2 - What kind of support for API management practices is offered by
LCPs, and how should they evaluate and improve that support?

The four LCPs that we evaluated in our research only implemented half the API man-
agement practices listed in the API-m-FAMM. The other half is left to the customers
to be implemented. The API-m-FAMM proved to be a useful tool in the assessment of
API management maturity and enables the LCP providers to plan their improvements.

We believe that by offering more API management capabilities LCP providers will
further democratize software development. Using the API-m-FAMM LCP providers can
plan the required improvements to enable the development of software ecosystems.
This creates a more powerful platform that supports the development of business crit-
ical software platforms.

8.1.3 Evolution Supporting Architecture

Architectural design decisions [122] influence many operational characteristics of a
software system, such as the manageability of a system when it undergoes evolution.

Section 8.1 — Answers to the Research Questions | 177

Designing an architecture that supports upgradability and manageability is crucial for
SPOs.

SRQ3.1 - How should SPOs make an informed decision between a generative
or interpretive model execution approach?

What the best fitting design is for a certain software system always depends on the
context. In Chapter 6 we presented how the context of the Model-Driven Engineering
Environments (MDEE) (a synonym for LCPs) influences the design of a model exe-
cution approach. This was done by summarizing existing literature and correlating
quality characteristics with the different model execution approach.

Through a survey among 22 product experts of sixteen different SPOs we illustrated
that there is a lack of guidance and knowledge for SPOs in building an MDEE. Al-
though the survey shows that many forms of model execution approaches are used,
SPOs do not have an explicit rationale for their design. Although the presented knowl-
edge was already available, it was scattered over different sources such as textbooks
and scientific papers. Our study makes the experience and knowledge of these many
authors available to MDD researchers and practitioners. We also presented this in
the decision support framework in Section 6.6. With this framework, SPOs have a
structured process for the design of the model execution approach.

SRQ3.2 - What is the role of change impact analysis in an LCP?

LCPs aim to make software development more efficient by raising the level of ab-
straction at which the software is developed. The challenge of software evolution,
changing the software as a response to outside forces, within LCPs remains. Citizen de-
velopers, LCP developers, and operations engineers need tools and processes to solve
these challenges. We believe that change impact analysis helps and supports these
teams in reaching their goals. An overall framework to structure the implementation
of impact analysis for LCPs is missing. In Chapter 7 we propose the Impact Analysis for
Low-Code Development Platforms framework that conceptualizes the process of impact
analysis for LCPs.

Through a case study of an industry LCP we explored the framework in more depth.
Although case studies at other LCP providers are necessary to validate the framework
and correct it from any biases, we believe that change impact analysis within LCPs can
improve both the applications developed on top of the LCP as well as the platform
itself. Change impact analysis should be at the foundation of the LCP development
process.

MRQ3 - How should the architecture of an LCP support the evolution of both
the platform as well as the applications?

The architecture of an LCP co-determines the maintainability of the platform and
the applications under evolution. In the first sub-question we showed how the model
execution approach relates to the quality characteristics of the platform. Interpretation
might negatively effect the performance, while it could positively effect the upgradabil-
ity of an application. Chapter 7 shows how different architectural decisions influence
how well impact analysis in an LCP can be executed.

We cannot give cut-and-paste answers or prescribe a specific architecture, however,

178 | Chapter 8 — Conclusion

our research shows how architectural decisions influence the maintainability of an LCP.
Engineers should take this advice and design their architecture consciously. However,
we also agree that there are a number of remaining open questions that require future
research.

8.2 Reflections

8.2.1 Reflections on Research Approach

Throughout our research we used different research methods, as detailed in Chapter 1.
These methods were used to gather knowledge, create models and frameworks, and
evaluate them. We reflect on three of these methods because of their importance to
our research.

In Chapter 3 we applied constructivist Grounded Theory (GT). This method allowed
us to conduct exploratory research. Instead of forcing our own ideas and theories,
we started the interviews open-minded and let the engineers guide our exploration.
Our perspectives, and our experience, did shape the data that we conducted. How-
ever, constructivist GT assumes that neither data nor theories are discovered, but are
constructed by the researchers out of the interactions with the field and its partici-
pants. Data are co-constructed by researchers and participants, and shaped by the
researchers’ perspectives, and values.

For our APl management model API-m-FAMMV, as described in Chapter 4, we created
a Focus Area Maturity Model (FAMM). We followed the method described by Steen-
bergen et al. [235, 236], but incorporated Design Science Research methods such as
the card sorting technique, described by Nielsen [175], to perform maturity level as-
signments, conducted multiple evaluation cycles, and made use of criteria for artifact
evaluation introduced by Prat, Comyn-Wattiau & Akoka [197]. We provided a detailed
description of the construction of the FAMM through the published source data [159]
that can be used by researchers as an example in future works. The API-m-FAMM was
successfully deployed in practice with minimal involvement of the researchers using
the constructed do-it-yourself kit. This shows that we as researchers can make matu-
rity models more relevant for industry by investing in the usability of these assessment
and improvement tools.

Finally, the Systematic Literature Review (SLR) method was central in Chapters 4
and 6. By conducting these reviews we were able to synthesize existing research
and create new models. SLRs are an important tool to present existing research in a
condensed manner. Although this made it accessible for a new audience, our contri-
butions did not stop there. In both cases we constructed an actionable model from
the synthesized knowledge. The decision support framework from Chapter 6 not only
presents the relation between quality characteristics and model execution approach,
it also shows how software architects can rate desired characteristics and receive deci-
sion support. The API-m-FAMM not only enables the assessment of API management
maturity but also shows the capabilities that can be improved. The conducted case
studies supported the usefulness of these tools for industry.

We show the value of a diverse toolkit for research in software architecture and its

Section 8.2 — Reflections | 179

creation process. We hope that these studies are picked up in the software architecture
curriculum.

8.2.2 Reflections on Academic Impact

In Chapter 1 we stated four research challenges related to the innovations that lie
at the heart of this dissertation. In this section we discuss those challenges and the
impact of our research on them.

RC1: Software systems are offered as a service, making SPOs responsible
for the operation of the software. Techniques for reliable systems that
continue operating through the deployment of new versions need to be
designed and evaluated.

Through our research we have shown that event sourcing and CQRS are identified
by industry as patterns for performant, reliable, and scalable software systems. Al-
though event sourcing and CQRS are already receiving more and more attention in
research literature [70, 278] scientific knowledge on the pattern itself is sparse. Our
research adds to the body of knowledge based on interviews with multiple engineers.
We show in which contexts and systems the pattern works and add rationales and
challenges that are experienced in industry. We also show upgrade strategies that ex-
plicitly support software architects in the deployment of new versions. New research
can built upon this new knowledge.

RC2: LCPs are increasingly used to build business-critical systems and com-
panies depend on the stability and reliability of the platform. Changes
made to the platform and applications threaten these characteristics; the
evolution of the platform and applications need to be controlled to mitigate
these risks.

We propose the Impact Analysis for Low-Code Development Platforms framework with
the goal of synthesizing existing literature on change impact analysis within the con-
text of LCPs. This proposal should guide new research in the building of scientific
knowledge that can improve the current support for software evolution in LCPs.

We have also shown how the model execution approach in a platform applying
model-driven engineering influences the quality characteristics of a system. Designing
the best fitting model execution approach can improve among other things the main-
tainability of the system. Our decision support framework supports engineers in this
design.

RC3: Event Sourcing and CQRS are identified by industry as techniques
for performant, reliable, and scalable software systems. However, the evo-
lution of event sourced systems require new techniques and strategies that
software architects can employ.

We discuss the benefits and liabilities of different event schema evolution techniques.
Our research can be used to mitigate the challenges that software evolution poses on
event sourced systems. The framework presented in Chapter 2 supports engineers in
the design of their upgrade strategy.

RC4: More and more SPOs turn their software products into platforms
and, at the same time, allow external complementors to access their plat-

180 | Chapter 8 — Conclusion

forms. To effectively grow their system into an ecosystem, they need to be
supported in the management of their integration capabilities.

The API-m-FAMM as presented in Chapter 4 enables SPOs to evaluate their current
API management capabilities. Based on the evaluations of four LCPs we have shown
what the current state of API management in LCPs is. We argued that LCPs need to
improve their supported API management practices to enable their customers to create
software ecosystems, but also stated specific research engineering challenges that LCPs
face on this road to improvement. The API-m-FAMM not only enables SPOs to evaluate
their current practices, it also offers SPOs a clear roadmap for improvement of their
capabilities.

8.2.3 Reflections on Industry Impact

This dissertation was conducted in the context of the AMUSE project, which is a joint
research project of Utrecht University, the Vrije Universiteit Amsterdam, and AFAS
Software B.V. Given that I already worked on the in-house L.CP developed by AFAS
Software, the industry context of the problems and challenges were clear. Although
the previous sections answered the stated research questions and reflected on our
contributions to the scientific methods we applied, our work had an impact on industry
as well.

The biggest impact was made with our research on event sourcing. There was a lack
of knowledge on evolution of event sourced systems that was filled by the research
presented in Chapters 2 and 3. Our research work has been shared on numerous
occasions since it was published (see the listing on page 212 for a complete overview).

Our work on The Dark Side of Event Sourcing, Chapter 2, was presented during two
local meetups and one conference in Berlin, Germany. We presented different forms
of An Empirical Characterization of Event Sourced Systems and Their Schema Evolution,
Chapter 3, in two meetups and three conferences (in Austria, The Netherlands, and
virtually). The experience we gathered through developing the Focus platform was
shared in meetups, conferences, and a podcast. Finally, we also contributed a chapter
to a book on Domain-Driven Design: Tackling Complexity in ERP Software: a Love Song
to Bounded Contexts, in Domain-Driven Design, The First 15 Years.

Presenting research at an industry conference differs from presenting at an academic
conference. Instead of the research methodology and a sound scientific approach, the
audience is far more interested in results and applicability. This translation of science
is crucial if presented to an industry audience. However, scientific research has great
value to offer to industry, because it transcends the anecdotal that is sometimes offered
by industry speakers. We believe it is crucial that software engineering research is
translated into applicable knowledge that furthers the profession.

8.2.4 Personal Reflections

This dissertation took six years to complete, from start to finish. At the start of my PhD
trajectory I had eight years of experience as Software Engineer and Architect. During
my PhD I combined the research and writing with my role as Lead Software Architect
at AFAS Software B.V. The result was a combination of practical software development
experience and conducting scientific research. This uniquely formed my research in

Section 8.3 — Future Work | 181

the manner that Kruchten et al. [146] describes; it gave context to the problems that
I worked on. For me this was an ideal situation, working in industry but also dipping
my toes into the academic world. Although research without a substantive real-world
context is definitely valuable, it is not as appealing to me. My favorite quote, and
the motto of this dissertation, has always been “Talk is cheap, show me the code.”
(attributed to Linus Torvalds). This is not to say that research is cheap. If I have
learned something in the past six years, it is that conducting research and writing
scientific papers is hard work. However, I have always been fond of research that also
shows its practical application in a real-world problem. The real proof of research, for
me, is showing its value in the implementation of a software system.

A consequence of combining my work as a software architect with the research as
a PhD, was the lack of specialization. A PhD often specializes in a single topic and
becomes an expert in that field. However, the combination of both my interest in a
broad range of topics and the broad responsibility as a software architect resulted in a
dissertation that lacks a specialization. Instead I decided to address three aspects and
illustrate how the contributions all support the umbrella idea of supporting software
architects in the evolution of low-code platforms.

This combination of industry and scientific research was not always a bed of roses.
Translating our, in our own eyes, interesting results into scientific contributions proved
to be difficult at times. The challenge of translating industry experience into scientific
research is similar to that of translating scientific research into industry. While the
responses we got during meetups and conferences proved that our results were rele-
vant to industry, our reviewers were critical of the scientific contribution. Through this
process of submitting articles one learns to handle criticism. However, after six years
I have to conclude that every paper became better after the feedback. Although the
review system seems unpredictable at times, peer review is a crucial tool in the cre-
ation and communication of scientific knowledge. I know that the feedback I received
improved the quality of my articles and dissertation.

From the process of writing articles I did learn that I like, and perhaps even need, a
system that allows for iterative work. If, after a mere six years of experience, I could
offer suggestions for the scientific system it would be this: support, better yet, encour-
age, early ideas and results. There are already places where these early ideas and
results can be presented; the yearly Belgium-Netherlands Software Evolution Workshop
is one that comes to mind. But it seems that there is room for improvement as well.
Fast and multiple review cycles should enable a more iterative approach that would
allow researchers to grow and develop their ideas. These ideas can then be supported
by prototypes or other proof of concepts. Newer forms such as hackathons and compe-
titions (such as the MSR Mining Challenge or Language Workbench Challenge) already
stimulate these approaches. There is still an important place for more theoretical work
in the form of articles, but other forms could stimulate a “show, not tell” culture.

8.3 Future Work

Our research discusses software evolution in low-code platforms. As we already stated,
our research stands on the shoulders of giants. At the same time we acknowledge that

182 | Chapter 8 — Conclusion

we are not finished yet. There is room for improvement in all three of the following
areas: future research should be conducted.

8.3.1 Event Sourced Systems and Evolution

Our studies on event sourced systems started to uncover challenges that require at-
tention. We contributed a framework with techniques, including benefits and liabili-
ties, to the knowledge on evolution of event sourced systems. Follow-up studies on
the frequency of schema changes in event sourced systems and the required opera-
tions would improve our framework. Similar to work on relational databases such as
that published by Roddick [209], Maule, Emmerich & Rosenblum [160], and Curino,
Moon & Zaniolo [47] would further the scientific knowledge of schema evolution in
event sourced systems. Further study is also necessary on upgrades of the query-side
of an event sourced system. While those upgrades can build on knowledge of schema
evolution in relational databases and document databases, the interaction between
schema evolution in the event store and derived databases is a new topic that requires
additional research.

In Chapter 3 we address other challenges such as the steep learning curve, lack
of technology, rebuilding projections, and privacy. These challenges require follow-
up studies to provide knowledge, techniques, and tools to address these challenges.
The lack of technology will not be solved by new research but tools to evaluate event
source technology would improve the selection process. The privacy aspect within
event sourced systems is an interesting challenge. Recent legislation around privacy
protects the personal information of users by ensuring that they can be forgotten by
a system. However, an immutable event store conflicts with these directives. New re-
search should evaluate possible solutions that make event sourced systems compliant
with the law.

8.3.2 API Management in Software Ecosystems

During the development of the API-m-FAMM we listed several improvements that
could be made. In this list of future work we join Spruit & Roling [233] and Sanchez-
Puchol & Pastor-Collado [218] in their suggestions for future work. First of all, more
research is required on how to successfully deploy focus area maturity models in in-
dustry. For instance, by developing a web application through which practitioners may
easily navigate, as well as read focus area, capability, and practice descriptions, and
then mark which practices are or are not implemented within their organization. This
would replace our Excel spreadsheet and source document that we distributed through
our do-it-yourself kit and make the API-m-FAMM more actionable. The second oppor-
tunity lies in the potential to customize and adapt the API-m-FAMM depending on cer-
tain organizational characteristics and goals. The conducted case studies have shown
that certain focus areas are irrelevant for organizations that exclusively utilize internal
APIs. Other information that could be used to perform this adaptation may include
characteristics such as the size of the organization, whether a third-party API manage-
ment platform is used, or what type of product or services the organization provides.
Moreover, we hypothesize that there are opportunities for automation, customization,
and adaptation. This would create incentives for practitioners to reuse maturity mod-

Section 8.3 — Future Work | 183

els and FAMMs for a longer period of time. Finally, it should be investigated whether
significant differences exist in terms of API management maturity between organiza-
tions that do use commercial platforms and those that do not.

In our research on API management among LCPs we outlined five engineering re-
search challenges that could be the topic of future work. These challenges are dis-
cussed in Chapter 5 and are in the areas Life Cycle Management, Performance, Observ-
ability, Community, and the abstractions for citizen developers. While the term ‘citizen
developer’ indicates that it has been the goal to open up software engineering to peo-
ple without formal software engineering education, we can hardly claim that this has
been successfully accomplished for API management. The complexity of modern soft-
ware solutions and the inherent simplification required to create LCPs are constantly
in direct conflict with each other. The platformisation trend is an example of this con-
flict: whenever LCPs venture into more complex types of software, new models and
abstractions are required to truly make software engineering accessible to any citizen
developer. We see it as future work to design new abstractions that make LCP solutions
simpler and more powerful in supporting API management practices.

8.3.3 Evolution Supporting Architecture

The final chapters on architecture in LCPs show that in general, knowledge on devel-
oping fully capable platforms is missing. Future research should gather and synthesize
this knowledge, first of all through systematic literature reviews. This existing knowl-
edge can then be used to ground the proposed Impact Analysis for Low-Code Develop-
ment Platforms framework. The result should be a comprehensive overview, including
definitions for the different concepts, that would bring together the different research
areas around impact analysis, model-driven engineering, and software evolution. We
join Tisi et al. [248] in stating that scalable artifact management is required for LCPs
to support large-scale platforms. These management tools would further improve the
options for impact analysis over these artifacts.

Luo et al. [156] state the high learning curve, and the lack of ease of use in LCPs as
challenges reported by practitioners. This matches our evaluation of support for API
management practices in LCPs. Tasks just outside the obvious design and development
of business applications, such as API management and testing [137], require new
abstractions.

The results from these opportunities should be validated with current LCP providers.
This validation balances the theoretical knowledge with real-world, context-specific
experiences. Case studies at multiple LCP providers are necessary to evaluate the
collected knowledge and remove biases. This would result in actionable best practices
that will move LCPs forward in democratizing software development.

Bibliography

[1]

[2]

[3]

(4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

Aalst, W. M. van der, Hee, K. M. van, Werf, J. M. van der & Verdonk, M.
Auditing 2.0: Using process mining to support tomorrow’s auditor. Computer,
vol. 43, no. 3. 2010, pp. 90-93. DOI: 10.1109/MC.2010.61 (Cited on page 53).

Adolph, S., Hall, W. & Kruchten, P. Using grounded theory to study the experi-
ence of software development. Empirical Software Engineering, vol. 16, no. 4.
2011, pp. 487-513. DoI: 10.1007/s10664-010-9152-6 (Cited on pages 15,
45, 46).

Almonte, L., Guerra, E., Cantador, I. & De Lara, J. Recommender Systems
in Model-Driven Engineering A Systematic Mapping Review. Software and
Systems Modeling. 2021. DOI: 10 . 1007 /10270 - 021 - 00905 - x (Cited on
page 159).

Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M. & Chatzigeorgiou, A. Iden-
tifying, Categorizing and Mitigating Threats to Validity in Software Engineer-
ing Secondary Studies. Information and Software Technology, vol. 106. 2019,
pp- 201-230 (Cited on page 109).

Andreessen, M. Why software is eating the world. Wall Street Journal, vol. 20,
no. 2011. 2011, p. C2 (Cited on page 3).

Andreo, S. & Bosch, J. APl Management Challenges in Ecosystems. In: Interna-
tional Conference on Software Business. 2019, pp. 86-93. DOI: 10.1007/978-
3-030-33742-1_8 (Cited on pages 10, 116).

Anh, D. T. T., Zhang, M., Ooi, B. C. & Chen, G. Untangling Blockchain: A Data
Processing View of Blockchain Systems. IEEE Transactions on Knowledge and
Data Engineering, vol. 4347, no. c. 2018, pp. 1-20. DOI: 10.1109/TKDE.2017.
2781227 (Cited on page 51).

Arsanjani, A. & Holley, K. The Service Integration Maturity Model: Achieving
Flexibility in the Transformation to SOA. In: 2006 IEEE International Confer-
ence on Services Computing (SCC’06). 2006, p. 515 (Cited on page 88).

Avery, P. & Reta, R. Scaling Event Sourcing for Netflix Downloads. 2017. URL:
https://www.infoq.com/presentations/netflix-scale-event-sourcing
(Cited on pages 44, 57).

AxonlQ. AxonDB. 2019. URL: https ://axoniq . io/product - overview/
axondb (Cited on pages 65, 68).

AxonlQ. Reference Guide Axon Framework reference guide - Event Upcasting.
2019. URL: https://docs . axoniq.io/reference-guide/configuring-

https://doi.org/10.1109/MC.2010.61
https://doi.org/10.1007/s10664-010-9152-6
https://doi.org/10.1007/s10270-021-00905-x
https://doi.org/10.1007/978-3-030-33742-1_8
https://doi.org/10.1007/978-3-030-33742-1_8
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/TKDE.2017.2781227
https://www.infoq.com/presentations/netflix-scale-event-sourcing
https://axoniq.io/product-overview/axondb
https://axoniq.io/product-overview/axondb
https://docs.axoniq.io/reference-guide/configuring-infrastructure-components/event-processing/event-bus-and-event-store

186 |

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

Bibliography

infrastructure-components/event-processing/event-bus-and-event-
store (Cited on pages 31, 70).

Basole, R. C. On the Evolution of Service Ecosystems: A Study of the Emerg-
ing API Economy. In: Handbook of Service Science, Volume II. Springer, 2019,
pPp- 479-495 (Cited on page 82).

Batouta, Z. 1., Dehbi, R., Talea, M. & Hajoui, O. Multi-criteria Analysis and
Advanced Comparative Study Between Automatic Generation Approaches in
Software Engineering. Journal of Theoretical and Applied Information Technol-
ogy, vol. 81, no. 3. 2015, pp. 609-620 (Cited on pages 137, 143, 145, 146).
Becker, J., Knackstedt, R. & Poppelbuls, J. Developing Maturity Models for IT
Management. Business & Information Systems Engineering, vol. 1, no. 3. 2009,
pp- 213-222 (Cited on pages 13, 86).

Betts, D., Dominguez, J., Melnik, G., Simonazzi, F. & Subramanian, M. Ex-
ploring CQRS and Event Sourcing: A journey into high scalability, availability,
and maintainability with Windows Azure. Microsoft patterns & practices, 2013
(Cited on pages 31, 68).

Bider, I., Johannesson, P. & Perjons, E. Using Empirical Knowledge and Studies
in the Frame of Design Science Research. Tech. rep. 2013, pp. 463-470 (Cited
on page 15).

Biemans, F. P., Lankhorst, M. M., Teeuw, W. B. & Van De Watering, R. G. Deal-
ing with the complexity of business systems architecting. Systems Engineering,
vol. 4, no. 2. 2001, pp. 118-133. DOI: 10.1002/sys.1010 (Cited on page 53).
Bock, A. C. & Frank, U. In Search of the Essence of Low-Code: An Exploratory
Study of Seven Development Platforms. In: Proceedings of the 24th ACM/IEEE
international conference on model driven engineering languages and systems:
companion proceedings. 2021 (Cited on page 8).

Bock, A. C. & Frank, U. Low-Code Platform. Business & Information Systems
Engineering, vol. 63, no. 6. Dec. 2021, pp. 733-740. DOI: 10.1007 /512599~
021-00726-8. (Cited on page 3).

Brady, E. C. & Hammond, K. Scrapping your inefficient engine. ACM SIGPLAN
Notices, vol. 45, no. 9. 2010, p. 297. DOI: 10.1145/1932681.1863587 (Cited
on page 143).

Brandolini, A. Introducing Event Storming. Leanpub, 2018 (Cited on page 44).
Breaux, T. & Moritz, J. The 2021 software developer shortage is coming: com-
panies must address the difficulty of hiring and retaining high-skilled employ-
ees from an increasingly smaller labor supply. Communications of the ACM,
vol. 64. 7 June 2021, pp. 39-41. DOI: 10.1145/3440753 (Cited on page 3).
Brewer, E. A. Lessons from Giant-Scale Services. IEEE Internet Computing, vol. 5,
no. 4. 2001, pp. 46-55. DOI: 10.1109/4236.939450. (Cited on pages 33, 34).
Brown, A. W. An introduction to Model Driven Architecture - Part 1; MDA and
Today’s Systems. Tech. rep. IBM DeveloperWorks, RationalEdge, 2004 (Cited
on pages 8, 134).

Bruin, T. de, Rosemann, M., Freeze, R. & Kulkarni, U. Understanding the main
phases of developing a maturity assessment model. ACIS 2005 Proceedings -

https://docs.axoniq.io/reference-guide/configuring-infrastructure-components/event-processing/event-bus-and-event-store
https://docs.axoniq.io/reference-guide/configuring-infrastructure-components/event-processing/event-bus-and-event-store
https://docs.axoniq.io/reference-guide/configuring-infrastructure-components/event-processing/event-bus-and-event-store
https://doi.org/10.1002/sys.1010
https://doi.org/10.1007/s12599-021-00726-8
https://doi.org/10.1007/s12599-021-00726-8
https://doi.org/10.1145/1932681.1863587
https://doi.org/10.1145/3440753
https://doi.org/10.1109/4236.939450

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Bibliography | 187

16th Australasian Conference on Information Systems. 2005 (Cited on pages 86,
117, 118).

Bui, D. H. Design and Evaluation of a Collaborative Approach for API Lifecy-
cle Management. MA thesis. Technical University of Munich, 2018 (Cited on
page 82).

CA Technologies. The API Management Playbook: Understanding Solutions
for API Management. 2019. URL: https://docs.broadcom. com/docs/the-
api-management-playbook (Cited on page 85).

Cabot, J. Positioning of the low-code movement within the field of model-
driven engineering. Proceedings - 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MODELS-C 2020 - Compan-
ion Proceedings. 2020, pp. 535-537. DOI: 10.1145/3417990. 3420210 (Cited
on pages 3, 8, 116, 156, 157).

Callaghan, M. Facebook - Online Schema Change for MySQL. 2010. URL: https:
//www.facebook.com/notes/mysql-at-facebook/online-schema-change-
for-mysql/430801045932/ (Cited on pages 27, 31).

Carmel, E. & Agarwal, R. The Maturation of Offshore Sourcing of Informa-
tion Technology Work. In: Information systems outsourcing. Springer, 2006,
pp. 631-650 (Cited on page 88).

Castillo-Montoya, M. Preparing for interview research: The interview protocol
refinement framework. Qualitative Report, vol. 21, no. 5. 2016, pp. 811-831
(Cited on page 48).

Chandy, K. M. Event Driven Architecture. In: Encyclopedia of Database Systems.
Ed. by LIU, L. & OZSU, M. T. Boston, MA: Springer US, 2009, pp. 1040-1044.
ISBN: 978-0-387-39940-9. DOI: 10.1007/978-0-387-39940-9_570 (Cited on
page 8).

Charmaz, K. & Bryant, A. Grounded theory. International Encyclopedia of Ed-
ucation. 2010, pp. 406-412. pOI: 10.1016/B978-0-08-044894-7.01581-5
(Cited on pages 15, 46, 47, 72).

Chen, L. Continuous delivery: Huge benefits, but challenges too. IEEE Software,
vol. 32, no. 2. 2015, pp. 50-54. DOI: 10.1109/MS.2015.27 (Cited on page 24).

Choudhary, V. Software as a service: Implications for investment in software
development. In: 40th Annual Hawaii International Conference on System Sci-
ences (HICSS’07). 2007, 209a-209a (Cited on page 7).

Cicchetti, A., Ruscio, D. D., Eramo, R., Pierantonio, A., Informatica, D. & Aquila,
I. L. Automating Co-evolution in Model-Driven Engineering. In: Enterprise Dis-
tributed Object Computing Conference, 2008. EDOC’08. 12th International IEEE
(pp. 222-231). 2008 (Cited on page 169).

Claps, G. G., Berntsson Svensson, R. & Aurum, A. On the journey to continuous
deployment: Technical and social challenges along the way. Information and
Software Technology, vol. 57, no. 1. 2015, pp. 21-31. DOI: 10.1016/j.infsof.
2014.07.009. (Cited on page 24).

Cleenewerck, T. Modularizing Language Constructs: A Reflective Approach.
PhD thesis. Vrije Universteit Brussel, 2007. (Cited on pages 143, 145).

https://docs.broadcom.com/docs/the-api-management-playbook
https://docs.broadcom.com/docs/the-api-management-playbook
https://doi.org/10.1145/3417990.3420210
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://doi.org/10.1007/978-0-387-39940-9_570
https://doi.org/10.1016/B978-0-08-044894-7.01581-5
https://doi.org/10.1109/MS.2015.27
https://doi.org/10.1016/j.infsof.2014.07.009
https://doi.org/10.1016/j.infsof.2014.07.009

188 | Bibliography

[39] Clements, P. Coming Attractions in Software Architecture. In: Proceedings of
5th International Workshop on Parallel and Distributed Real-Time Systems and
3rd Workshop on Object-Oriented Real-Time Systems. April. IEEE Comput. Soc,
1997, pp. 2-9. 1SBN: 0-8186-8096-2. DOI: 10.1109/WPDRTS . 1997 . 637857.
(Cited on page 53).

[40] Cleve, A., Gobert, M., Meurice, L., Maes, J. & Weber, J. Understanding database
schema evolution: A case study. Science of Computer Programming, vol. 97,
no. P1. 2015, pp. 113-121. pDOI: 10.1016/j.scico.2013.11.025. (Cited on
page 27).

[41] Coleman Parkes Research. APIs: Building A Connected Business in the App
Economy. 2017. URL: https://docs.broadcom.com/doc/apis-building-a-
connected-business-in-the-app-economy (Cited on page 82).

[42] Consel, C. & Marlet, R. Architecturing Software Using A Methodology For Lan-
guage Development. Principles Of Declarative Programming, vol. 1490, no. Oc-
tober. 1998, pp. 170-194. (Cited on pages 143-145).

[43] Cook, W. R., Delaware, B., Finsterbusch, T., Ibrahim, A. & Wiedermann, B.
Model Transformation by Partial Evaluation of Model Interpreters. Tech. rep.
2008 (Cited on pages 143, 145, 146).

[44] Cordy, J. R. TXLA language for programming language tools and applications.
In Proceedings of the ACM 4th International Workshop on Language Descriptions,
Tools and Applications. 2004, pp. 1-27. DOI: 10.1016/j.entcs.2004.11.006
(Cited on pages 143, 145).

[45] Crawford, J. K. Project Management Maturity Model. Auerbach Publications,
2006. DOI: 10.1201/9780849379468 (Cited on page 88).

[46] Curino, C., Moon, H. J., Deutsch, A. & Zaniolo, C. Automating the database
schema evolution process. VLDB J., vol. 22, no. 1. 2013, pp. 73-98. poI: 10.
1007/s00778-012-0302-x (Cited on page 27).

[47] Curino, C., Moon, H. J. & Zaniolo, C. Graceful database schema evolution:
the PRISM workbench. PVLDB, vol. 1, no. 1. 2008, pp. 761-772 (Cited on
pages 27, 182).

[48] Cusumano, M. A. Microsoft Secrets: How the World’s Most Powerful Software
Company Creates Technology, Shapes Markets, and Manages People. Simon &
Schuster Trade, 1998 (Cited on page 7).

[49] Czarnecki, K. & Eisenecker, U. W. Generative programming: Methods, Tools,
and Applications. Addison-Wesley Professional, 2000, p. 864 (Cited on pages 136,
143, 151).

[50] Dahan, U. Clarified CQRS. 2009. URL: http://www.udidahan.com/2009/12/0
(Cited on pages 24, 61).

[51] Daigneau, R. Service Design Patterns: fundamental design solutions for SOAP/WSDL
and restful Web Services. Addison-Wesley, 2011 (Cited on page 68).

[52] Date, C. J. An Introduction to Database Systems. 8th ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003. 1SBN: 0321197844 (Cited
on page 58).

https://doi.org/10.1109/WPDRTS.1997.637857
https://doi.org/10.1016/j.scico.2013.11.025
https://docs.broadcom.com/doc/apis-building-a-connected-business-in-the-app-economy
https://docs.broadcom.com/doc/apis-building-a-connected-business-in-the-app-economy
https://doi.org/10.1016/j.entcs.2004.11.006
https://doi.org/10.1201/9780849379468
https://doi.org/10.1007/s00778-012-0302-x
https://doi.org/10.1007/s00778-012-0302-x
http://www.udidahan.com/2009/12/0

Bibliography | 189

[53] De, B. API Management. Berkeley, CA: Apress, 2017, pp. 15-28. DOI: 10.1007/
978-1-4842-1305-6_2 (Cited on pages 9, 82, 85, 89, 107, 109, 119, 125).

[54] De Bruin, T., Rosemann, M., Freeze, R. & Kaulkarni, U. Understanding the
Main Phases of Developing A Maturity Assessment Model. In: Australasian
Conference on Information Systems (ACIS): 2005, pp. 8-19 (Cited on pages 88,
94, 107-111).

[55] Debski, A., Szczepanik, B., Malawski, M., Spahr, S. & Muthig, D. In Search for
a Scalable & Reactive Architecture of a Cloud Application: CQRS and Event
Sourcing Case Study. IEEE Software, vol. PP, no. 99. 2017, pp. 1-1. DOI: 10.
1109/MS.2017.265095722 (Cited on page 44).

[56] Deursen, A. van, Klint, P. & Visser, J. Domain-specific languages: an annotated
bibliography. ACM Sigplan Notices, vol. 35, no. 6. 2000, pp. 26-36. DOI: 10.
1145/352029.352035. (Cited on pages 3, 141).

[57] Devoteam. API Management at Liberty Global Inc. 2016. URL: https://nl.
devoteam.com/en/our-case-studies/api-management-liberty-global-
inc (Cited on pages 85, 86).

[58] Di Ruscio, D., Limmel, R. & Pierantonio, A. Automated co-evolution of GMF
editor models. In: International Conference on Software Language Engineering.
June 2010, pp. 143-162. (Cited on page 169).

[59] Diaz, V.G., Valdez, E. R. N., Espada, J. P., Bustelo, b. C. P. G., Lovelle, J. M. C. & Marin,
C. E. M. A brief introduction to model-driven engineering. Tecnura, vol. 18,
no. 40. 2014, pp. 127-142 (Cited on pages 134, 143, 145).

[60] Dominguez, E., Lloret, J., Rubio, A. L. & Zapata, M. A. MeDEA: A database
evolution architecture with traceability. Data & Knowledge Engineering, vol. 65,
no. 3. 2008, pp. 419-441. po1: 10.1016/j.datak.2007.12.001 (Cited on
page 27).

[61] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin,
R., Safina, L., Lluch-lafuente, A., Giallorenzo, S., Lafuente, A. L. & Mazzara, M.
Microservices : yesterday , today , and tomorrow. Present and Ulterior Software
Engineering, no. November. 2017, pp. 195-216. DOI: 10.13140/RG.2.1.3257.
4961. (Cited on page 55).

[62] Dreyer, W., Dittrich, A. K. & Schmidt, D. Research perspectives for time series
management systems. ACM SIGMOD Record, vol. 23, no. 1. 1994, pp. 1015.
DOI: 10.1145/181550.181553. (Cited on page 50).

[63] Dumitras, T. No Downtime for Data Conversions : Rethinking Hot Upgrades.
Tech. rep. Carnegie Mellon University, 2009 (Cited on pages 27, 31).

[64] Dumitras, T. & Narasimhan, P. Why do upgrades fail and what can we do about
It? Toward dependable, online upgrades in enterprise system. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 5896 LNCS, no. August 1996. 2009,
pp- 349-372. DOI: 10.1007/978-3-642-10445-9_18 (Cited on pages 27, 69).

[65] Dumitras, T., Narasimhan, P. & Tilevich, E. To Upgrade or Not to Upgrade
Impact of Online Upgrades across Multiple Administrative Domains. ACM SIG-

https://doi.org/10.1007/978-1-4842-1305-6_2
https://doi.org/10.1007/978-1-4842-1305-6_2
https://doi.org/10.1109/MS.2017.265095722
https://doi.org/10.1109/MS.2017.265095722
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/352029.352035
https://nl.devoteam.com/en/our-case-studies/api-management-liberty-global-inc
https://nl.devoteam.com/en/our-case-studies/api-management-liberty-global-inc
https://nl.devoteam.com/en/our-case-studies/api-management-liberty-global-inc
https://doi.org/10.1016/j.datak.2007.12.001
https://doi.org/10.13140/RG.2.1.3257.4961
https://doi.org/10.13140/RG.2.1.3257.4961
https://doi.org/10.1145/181550.181553
https://doi.org/10.1007/978-3-642-10445-9_18

190 | Bibliography

PLAN NOTICES, vol. 45, no. 10. 2010, pp. 865-876. DOI: 10.1145/1932682.
1869530 (Cited on page 34).

[66] Easterbrook, S., Singer, J., Storey, M.-A. & Damian, D. Guide to Advanced
Empirical Software Engineering. Guide to Advanced Empirical Software Engi-
neering. Ed. by Shull, F., Singer, J. & Sjgberg, D. 1. K., 2008, pp. 285-311. por:
10.1007/978-1-84800-044-5_11. (Cited on page 12).

[67] Elisabeth Hove, S. & Anda, B. Experiences from Conducting Semi-Structured
Interviews in Empirical Software Engineering Research. Tech. rep. 2005 (Cited
on page 14).

[68] Endjin. API Maturity Matrix. 2017. URL: https://endjin.com/blog/2017/
07/kickstart-your-api-proposition-with-the-api-maturity-matrix
(Cited on page 84).

[69] Engstrom, E., Storey, M. A., Runeson, P., Host, M. & Baldassarre, M. T. How
software engineering research aligns with design science: a review. Empirical
Software Engineering, vol. 25, no. 4. July 2020, pp. 2630-2660. DOI: 10.1007/
$10664-020-09818-7 (Cited on page 13).

[70] Erb, B. Distributed Computing on Event-Sourced Graphs. PhD thesis. Univer-
sitdt Ulm, 2019 (Cited on pages 50, 179).

[71] Erb, B. & Hauck, F. J. On the Potential of Event Sourcing for Retroactive Actor-
based Programming. In: First Workshop on Programming Models and Languages
for Distributed Computing. Vol. 1. ACM, 2016, 4:1-4:5 (Cited on page 44).

[72] Ertl, M. A. & Gregg, D. The structure and performance of efficient interpreters.
Journal of Instruction-Level Parallelism, vol. 5. 2003, pp. 1-25. DO1: 10.1145/
248208.237175. (Cited on pages 142, 143).

[73] Etikan, I., Musa, S. A. & Alkassim, R. S. Comparison of Convenience Sampling
and Purposive Sampling. American journal of theoretical and applied statistics,
vol. 5, no. 1. 2016, pp. 1-4 (Cited on pages 14, 90).

[74] Evans, E. Domain-Driven Design. Addison-Wesley Professional, 2003 (Cited
on pages 3, 44, 54, 61, 173).

[75] Evans, E. Domain-Driven Design Reference. Eric Evans, 2015. (Cited on page 50).

[76] Event Store, L. Event Store. 2019. URL: https://eventstore.org/ (Cited on
pages 58, 65, 68, 70).

[77] Fabry, J., Dinkelaker, T., Noye, J. & Tanter, E. A Taxonomy of Domain-Specific
Aspect Languages. ACM Computing Surveys, vol. 47, no. 3. 2015, pp. 1-44.
DOI: 10.1145/2685028. (Cited on pages 137, 143, 144).

[78] Falessi, D., Cantone, G., Kazman, R. & Kruchten, P. Decision-making tech-
niques for software architecture design. ACM Computing Surveys, vol. 43, no. 4.
2011, pp. 1-28. DOI: 10.1145/1978802.1978812. (Cited on page 146).

[79] Feijter, R. de, Overbeek, S., Vliet, R. van, Jagroep, E. & Brinkkemper, S. De-
vOps competences and maturity for software producing organizations. In: En-
terprise, Business-Process and Information Systems Modeling. Vol. 318. Springer
Verlag, 2018, pp. 244-259. 1SBN: 9783319917030. DOI: 10.1007/978-3-319-
91704-7_16 (Cited on page 117).

https://doi.org/10.1145/1932682.1869530
https://doi.org/10.1145/1932682.1869530
https://doi.org/10.1007/978-1-84800-044-5_11
https://endjin.com/blog/2017/07/kickstart-your-api-proposition-with-the-api-maturity-matrix
https://endjin.com/blog/2017/07/kickstart-your-api-proposition-with-the-api-maturity-matrix
https://doi.org/10.1007/s10664-020-09818-7
https://doi.org/10.1007/s10664-020-09818-7
https://doi.org/10.1145/248208.237175
https://doi.org/10.1145/248208.237175
https://eventstore.org/
https://doi.org/10.1145/2685028
https://doi.org/10.1145/1978802.1978812
https://doi.org/10.1007/978-3-319-91704-7_16
https://doi.org/10.1007/978-3-319-91704-7_16

Bibliography | 191

[80] Ferreira, H. S., Correia, F. F. & Welicki, L. Patterns for data and metadata evo-
lution in adaptive object-models. Proceedings of the 15th Conference on Pattern
Languages of Programs PLoP 08. 2008, p. 1. DOI: 10.1145/1753196.1753203.
(Cited on page 169).

[81] Flyvbjerg, B. Five Misunderstandings About Case-Study Research. Qualitative
Inquiry, vol. 12, no. 2. 2006, pp. 219-245. DOI: 10.1177/1077800405284363
(Cited on page 70).

[82] Forbrig, P. Use cases, user stories and bizdevops. In: 2018 (Cited on page 3).

[83] Fowler, M. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002 (Cited on page 44).

[84] Fowler, M. Event sourcing. 2005. URL: http://martinfowler.com/eaaDev/
EventSourcing.html (Cited on pages 5, 24, 44).

[85] Fowler, M. BlueGreenDeployment. 2010. URL: http://martinfowler . com/
bliki/BlueGreenDeployment.html (Cited on page 34).

[86] Fowler, M. Schemaless Data Structures. 2013. URL: http://martinfowler.
com/articles/schemaless/ (Cited on pages 26, 60, 66).

[87] Fowler, M. What do you mean by Event-Driven? 2017. URL: https://martinfowler.
com/articles/201701-event-driven.html (Cited on pages 4, 44, 47).

[88] Galvéo, I. & Goknil, A. Survey of Traceability Approaches in Model-Driven En-
gineering. In: 11th IEEE International Enterprise Distributed Object Computing
Conference. 2007, pp. 313-313 (Cited on page 164).

[89] Gamez Diaz, A., Ferndndez Montes, P. & Ruiz Cortés, A. Towards SLA-driven
API Gateways. XI Jornadas De Ciencia E IngenierfA De Servicios. 2015 (Cited on
page 84).

[90] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995 (Cited
on pages 49, 50, 59, 70).

[91] Gaouar, L., Benamar, A. & Bendimerad, F. T. Model Driven Approaches to
Cross Platform Mobile Development. Proceedings of the International Confer-
ence on Intelligent Information Processing, Security and Advanced Communica-
tion. 2015, 19:1-19:5. poI: 10.1145/2816839.2816882. (Cited on pages 143,
144).

[92] Garousi, V., Petersen, K. & Ozkan, B. Challenges and best practices in industry-
academia collaborations in software engineering: A systematic literature re-
view. Information and Software Technology, vol. 79. Nov. 2016, pp. 106-127.
DOI: 10.1016/j.infsof.2016.07.006. (Cited on page 16).

[93] Gartner. A Guidance Framework for Evaluating API Management Solutions.
2019. URL: https://www.gartner.com/en/documents/3956412/a-guidance-
framework-for-evaluating-api-management-solut (Cited on page 85).

[94] Golfashani, N & Nahid, G. Understanding reliability and validity in qualitative
research. The qualitative report, vol. 8, no. 4. 2003, pp. 597-607. (Cited on
page 71).

https://doi.org/10.1145/1753196.1753203
https://doi.org/10.1177/1077800405284363
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/articles/schemaless/
http://martinfowler.com/articles/schemaless/
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html
https://doi.org/10.1145/2816839.2816882
https://doi.org/10.1016/j.infsof.2016.07.006
https://www.gartner.com/en/documents/3956412/a-guidance-framework-for-evaluating-api-management-solut
https://www.gartner.com/en/documents/3956412/a-guidance-framework-for-evaluating-api-management-solut

192 |

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

Bibliography

Google Inc. Protocol Buffers. 2019. URL: https://github . com/ google/
protobuf (Cited on pages 57, 68).

Gorodinski, L. Scaling Event-Sourcing at Jet. 2017. URL: https://medium.
com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8 (Cited on
page 44).

Gray, J. & Reuter, A. Transaction processing: concepts and techniques. Elsevier,
1992 (Cited on page 50).

Gregg, D. & Ertl, M. A. A Language and Tool for Generating Efficient Virtual
Machine Interpreters. In: Domain-Specific Program Generation. Springer Berlin
Heidelberg, 2004, pp. 196-215 (Cited on pages 143-145).

Greiler, M., Deursen, A. van & Storey, M. A. Test confessions: A study of testing
practices for plug-in systems. In: Proceedings - International Conference on Soft-
ware Engineering. 2012, pp. 244-254. 1SBN: 9781467310673. DOI: 10.1109/
ICSE.2012.6227189 (Cited on page 46).

Gruschko, B., Kolovos, D. S. & Paige, R. F. Towards Synchronizing Models with
Evolving Metamodels. In: Proceedings of the International Workshop on Model-
Driven Software Evolution. 2007, pp. 3-3 (Cited on page 169).

Guana, V. & Stroulia, E. How Do Developers Solve Software-engineering Tasks
on Model-based Code Generators? An Empirical Study Design. First Inter-
national Workshop on Human Factors in Modeling, no. May. 2015 (Cited on
pages 138, 143, 145).

Haddad, C. Comparison Evaluation Matrix. 2015. URL: https://wso02. com/
whitepapers/comparison-evaluation-matrix/ (Cited on page 84).
Harrison, N. B., Avgeriou, P. & Zdun, U. Using patterns to capture architectural
decisions. IEEE Software, vol. 24, no. 4. 2007, pp. 38-45. DOI: 10.1109/MS.
2007.124 (Cited on page 44).

Hearnden, D., Lawley, M. & Raymond, K. Incremental Model Transformation
for the Evolution of Model-Driven Systems. In: 9th International Conference,
MoDELS 2006. 2006 (Cited on page 169).

Helland, P. Immutability changes everything. Communications of the ACM,
vol. 59, no. 1. 2015, pp. 64-70. DOI: 10.1145/2844112 (Cited on page 54).
Hevner, A. & Chatterjee, S. Design Research in Information Systems. Springer,
2010. pOI: 10.1007/978-1-4419-5653-8 (Cited on page 13).

Hevner, A. R., March, S. T., Park, J. & Ram, S. Design Science in Information
Systems Research. MIS quarterly, vol. 28, no. 1. 2004, pp. 75-105 (Cited on
page 13).

Hick, J. M. & Hainaut, J. L. Database application evolution: A transformational
approach. Data and Knowledge Engineering, vol. 59, no. 3. 2006, pp. 534-558.
DOI: 10.1016/j.datak.2005.10.003 (Cited on page 27).

Hinkel, G., Denninger, O., Krach, S. & Groenda, H. Experiences with model-
driven engineering in neurorobotics. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 9764. 2016, pp. 217-228. DOI: 10.1007/978-3-319-42061-
5_14 (Cited on page 143).

https://github.com/google/protobuf
https://github.com/google/protobuf
https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8
https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8
https://doi.org/10.1109/ICSE.2012.6227189
https://doi.org/10.1109/ICSE.2012.6227189
https://wso2.com/whitepapers/comparison-evaluation-matrix/
https://wso2.com/whitepapers/comparison-evaluation-matrix/
https://doi.org/10.1109/MS.2007.124
https://doi.org/10.1109/MS.2007.124
https://doi.org/10.1145/2844112
https://doi.org/10.1007/978-1-4419-5653-8
https://doi.org/10.1016/j.datak.2005.10.003
https://doi.org/10.1007/978-3-319-42061-5_14
https://doi.org/10.1007/978-3-319-42061-5_14

Bibliography | 193

[110] Hoda, R., Noble, J. & Marshall, S. Developing a grounded theory to explain
the practices of self-organizing Agile teams. Empirical Software Engineering,
vol. 17, no. 6. 2012, pp. 609-639. DOI: 10.1007/s10664-011-9161-0 (Cited
on page 46).

[111] Hohpe, G. & Woolf, B. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Professional, 2004 (Cited
on pages 44, 68).

[112] Hora, A., Robbes, R., Valente, M. T., Anquetil, N., Etien, A. & Ducasse, S. How
do developers react to API evolution? A large-scale empirical study. Software
Quality Journal, vol. 26, no. 1. 2018, pp. 161-191. pOI: 10.1007/s11219-
016-9344-4 (Cited on page 125).

[113] Humble, J. & Farley, D. Continuous delivery: reliable software releases through
build, test, and deployment automation. Addison-Wesley Professional, 2010.
(Cited on pages 33, 34).

[114] Hiiner, K. M., Ofner, M. & Otto, B. Towards A Maturity Model for Corporate
Data Quality Management. In: Proceedings of the 2009 ACM symposium on
Applied Computing. 2009, pp. 231-238 (Cited on page 88).

[115] Hutton, G. A tutorial on the universality and expressiveness of fold. Journal
of Functional Programming, vol. 9, no. 4. 1999, pp. 355-372. DoI: 10.1017/
S0956796899003500 (Cited on page 59).

[116] Inostroza, P. & Storm, T. van der. Modular Interpreters for the Masses Im-
plicit Context Propagation Using Object Algebras. No. Section 3. 2015. DOTI:
10.1145/2814204.2814209 (Cited on pages 143, 145).

[117] TIovino, L., Pierantonio, A. & Malavolta, I. On the impact significance of meta-
model evolution in MDE. Journal of Object Technology, vol. 11, no. 3. 2012.
DOI: 10.5381/jot.2012.11.3.a3 (Cited on page 169).

[118] ISO.ISO/IEC 25010:2011 Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — System and software
quality models. Tech. rep. Geneva, CH: International Organization for Stan-
dardization, 2011 (Cited on pages 31, 141).

[119] Iversen, J., Nielsen, P. A. & Norbjerg, J. Situated Assessment of Problems in
Software Development. ACM SIGMIS Database: the Database for Advances in
Information Systems, vol. 30, no. 2. 1999, pp. 66-81 (Cited on page 88).

[120] Jagadish, H., Mumick, I. S. & Silberschatz, A. View maintenance issues for the
chronicle data model. In: Proceedings of the fourteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems. ACM, 1995, pp. 113-124.
ISBN: 0-89791-730-8. DOI: http://doi.acm.org/10.1145/212433.220201.
(Cited on page 50).

[121] Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J. & Tilkov, S. Microservices:
The journey so far and challenges ahead. IEEE Software, vol. 35, no. 3. 2018,
pp. 24-35. DOI: 10.1109/MS.2018.2141039 (Cited on pages 4, 125).

[122] Jansen, A. & Bosch, J. Software Architecture as a Set of Architectural Design
Decisions. 5th Working IEEE/IFIP Conference on Software Architecture (WICSA05),

https://doi.org/10.1007/s10664-011-9161-0
https://doi.org/10.1007/s11219-016-9344-4
https://doi.org/10.1007/s11219-016-9344-4
https://doi.org/10.1017/S0956796899003500
https://doi.org/10.1017/S0956796899003500
https://doi.org/10.1145/2814204.2814209
https://doi.org/10.5381/jot.2012.11.3.a3
https://doi.org/http://doi.acm.org/10.1145/212433.220201
https://doi.org/10.1109/MS.2018.2141039

194 |

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Bibliography

vol. 2005, no. May. 2005, pp. 109-120. DOI: 10.1109/WICSA.2005.61. (Cited
on pages 12, 138, 147, 176).

Jansen, S., Ballintijn, G. & Brinkkemper, S. A Process Model and Typology for
Software Product Updaters. Ninth European Conference on Software Mainte-
nance and Reengineering. 2005, pp. 265-274. DOI: 10.1109/CSMR . 2005 . 3.
(Cited on page 33).

Jansen, S. Theres no business like software business: trends in software inten-
sive business research. In: vol. 370 LNBIP. Springer, 2019, pp. 19-27. ISBN:
9783030337414. DOI: 10.1007/978-3-030-33742-1_3 (Cited on page 4).
Jansen, S. A Focus Area Maturity Model for Software Ecosystem Governance.
Information and Software Technology, vol. 118, no. November 2019. 2020,
p. 106219. por: 10.1016/j.infsof .2019.106219 (Cited on pages 88, 107,
108, 116, 117).

Jansen, S., Brinkkemper, S. & Cusumano, M. A. Software ecosystems: Ana-
lyzing and managing business networks in the software industry. Edward El-
gar Publishing, 2013. 1SBN: 9781781955628. DOI: 10.4337/9781781955635
(Cited on pages 4, 7, 82, 116).

Jensen, C. S., Dyreson, C. E., Bohlen, M. H., Clifford, J., Elmasri, R., Gadia,
S. K., Grandi, F., Hayes, P. J., Jajodia, S., Kifer, W., Kline, N., Lorentzos,
N. A., Mitsopoulos, Y. G., Montanari, A., Nonen, D. A., Peressi, E., Pernici,
B., Roddick, J. F., Sarda, N. L., Scalas, M. R., Segev, A., Snodgrass, R. T., Soo,
M. D., Tansel, A. U., Tiberio, P. & Wiederhold, G. The Consensus Glossary
of Temporal Database Concepts - February 1998 Version. Temporal Databases,
Dagstuhl, no. February. 1998, pp. 367-405. DoI: 10.1007/BFb0053710 (Cited
on page 26).

Jolak, R., Ho-Quang, T., Michel, R. V. & Schiffelers, R. R. Model-based soft-
ware engineering: a multiple-case study on challenges and development ef-
forts. In: Association for Computing Machinery, Inc, Oct. 2018, pp. 213-223.
ISBN: 9781450349499. DOI: 10.1145/3239372.3239404 (Cited on page 3).

Jones, N. D., Gomard, C. K. & Sestoft, P. Partial Evaluation and Automatic
Program Generation. Prentice-Hall International, 1993. (Cited on page 143).
Jong, M. de & Deursen, A. van. Continuous Deployment and Schema Evolu-
tion in SQL Databases. In: 2015 IEEE/ACM 3rd International Workshop on Re-
lease Engineering. 2015, pp. 16-19. 1SBN: 978-1-4673-7070-7. DOI: 10.1109/
RELENG.2015. 14 (Cited on pages 27, 69).

Jorges, S. Construction and evolution of code generators: A model-driven and
service-oriented approach. Vol. 7747. 2013, pp. 1-265. DOI: 10.1007/3-540-
68339-9_34. (Cited on pages 143-145).

Kabbedijk, J., Bezemer, C.-P., Jansen, S. & Zaidman, A. Defining multi-tenancy:
A systematic mapping study on the academic and the industrial perspective.
Journal of Systems and Software, vol. 100. 2015, pp. 139-148. DOI: 10.1016/
j.jss.2014.10.034. (Cited on pages 6, 148).

Kabbedijk, J., Jansen, S. & Brinkkemper, S. A Case Study of the Variability Con-
sequences of the CQRS Pattern in Online Business Software. In: Proceedings of

https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/CSMR.2005.3
https://doi.org/10.1007/978-3-030-33742-1_3
https://doi.org/10.1016/j.infsof.2019.106219
https://doi.org/10.4337/9781781955635
https://doi.org/10.1007/BFb0053710
https://doi.org/10.1145/3239372.3239404
https://doi.org/10.1109/RELENG.2015.14
https://doi.org/10.1109/RELENG.2015.14
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1016/j.jss.2014.10.034
https://doi.org/10.1016/j.jss.2014.10.034

[134]

[135]
[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Bibliography | 195

the 17th European Conference on Pattern Languages of Programs. ACM, 2012,
p. 2. DOI: 10.1145/2602928.2603078 (Cited on pages 26, 44).

Kassab, M., Mazzara, M., Lee, J. Y. & Succi, G. Software architectural patterns
in practice: an empirical study. Innovations in Systems and Software Engineer-
ing, vol. 14, no. 4. 2018, pp. 263-271. DOI: 10.1007/s11334-018-0319-4.
(Cited on page 44).

Keller, W. The Bridge to the New Town - A Legacy System Migration Pattern.
In: EuroPLoP. 2000, pp. 261-268 (Cited on page 27).

Kelly, S. & Tolvanen, J.-P. Domain-Specific Modeling: enabling full code gener-
ation. John Wiley & Sons, 2008 (Cited on pages 136, 151).

Khorram, F., Mottu, J.-m., Sunyé, G., Khorram, F., Mottu, J.-m., Challenges,
G. S. & Testing, O. L.-c. Challenges & Opportunities in Low-Code Testing. 2020
(Cited on page 183).

Kitchenham, B. & Charters, S. Guidelines for performing Systematic Literature
Reviews in Software Engineering. Keele University and Durham University Joint
Report. 2007 (Cited on pages 14, 89).

Klein, G., Andronick, J., Keller, G., Matichuk, D., Murray, T. & OConnor, L.
Provably trustworthy systems. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 375. 2104 Oct. 2017.
DOI: 10.1098/rsta.2015.0404 (Cited on page 5).

Kleppmann, M. Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems. O’Reilly Media, Inc., 2017 (Cited
on page 50).

Kleppmann, M. Thinking in events: from databases to distributed collabora-
tion software: keynote at the 15th acm international conference on distributed
and event-based systems (debs). In: Association for Computing Machinery,
Inc, June 2021, pp. 15-24. 1SBN: 9781450385558. DOI: 10.1145/3465480 .
3467835 (Cited on page 4).

Klint, P. Interpretation Techniques. Software: Practice and Experience, vol. 11,
no. June 1979. 1981, pp. 963-973 (Cited on pages 142, 143).

Klint, P., Storm, T. van der & Vinju, J. Rascal, 10 years later. In: IEEE, Sept.
2019, pp. 139-139. 1sBN: 978-1-7281-4937-0. DOI: 10 . 1109/ SCAM. 2019 .
00023. (Cited on page 3).

Kogel, S. Recommender system for model driven software development. In:
Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software En-
gineering. Vol. Part F130154. Association for Computing Machinery, Aug. 2017,
pp. 1026-1029. 1SBN: 9781450351058. DOI: 10 . 1145/3106237 . 3119874
(Cited on page 159).

Korkmaz, N. Practitioners view on command query responsibility segregation.
MA thesis. Lund University, 2014 (Cited on page 26).

Kruchten, P., Briand, L., Bianculli, D., Nejati, S., Pastore, F. & Sabetzadeh, M.
The Case for Context-Driven Software Engineering Research: Generalizability
Is Overrated. IEEE Software, vol. 34, no. 05. 2017, pp. 72-75. poI: 10.1109/
MS.2017.3571562 (Cited on pages 16, 181).

https://doi.org/10.1145/2602928.2603078
https://doi.org/10.1007/s11334-018-0319-4
https://doi.org/10.1098/rsta.2015.0404
https://doi.org/10.1145/3465480.3467835
https://doi.org/10.1145/3465480.3467835
https://doi.org/10.1109/SCAM.2019.00023
https://doi.org/10.1109/SCAM.2019.00023
https://doi.org/10.1145/3106237.3119874
https://doi.org/10.1109/MS.2017.3571562
https://doi.org/10.1109/MS.2017.3571562

196 |

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Bibliography

Kruchten, P., Capilla, R. & Duenas, J. C. The Decision View’s Role in Software
Architecture Practice. IEEE Software, vol. 26, no. 2. Mar. 2009, pp. 36-42. DOI:
10.1109/MS.2009.52. (Cited on pages 138, 140).

Liammel, R. Coupled Software Transformations - Revisited. In: Proceedings of
the 2016 ACM SIGPLAN International Conference on Software Language Engi-
neering - SLE 2016. 2016, pp. 239-252. 1SBN: 9781450344470. DOI: 10.1145/
2997364 .2997366. (Cited on page 169).

Lassing, N., Rijsenbrij, D. & Van Wet, H. Towards a broader view on software
architecture analysis of flexibility. Proceedings - 6th Asia Pacific Software Engi-
neering Conference, APSEC 1999. 1999, pp. 238-245. DOI: 10.1109/APSEC.
1999.809608 (Cited on page 53).

Lees, C., Mallick, A., Paar, T., Fontenay, E. & Pimakova, K. APIs: The Digital
Glue - How Banks Can Thrive in an API Economy. 2019. URL: https://www.
accenture.com/_acnmedia/PDF-100/Accenture-How-Banks-Can-Thrive-
API-Economy.pdf (Cited on page 85).

Lehman, M. M. On understanding laws, evolution, and conservation in the
large-program life cycle. Journal of Systems and Software, vol. 1. Jan. 1980,
pp. 213-221. DOI: 10.1016/0164-1212(79)90022-0. (Cited on pages 4, 10).

Lehman, M. M. Programs, Life Cycles, and Laws of Software Evolution. Pro-
ceedings of the IEEE, vol. 68, no. 9. 1980, pp. 1060-1076. DOI: 10.1109/PROC.
1980.11805 (Cited on page 24).

Lehnert, S. A taxonomy for software change impact analysis. In: IWPSE-EVOL’11
- Proceedings of the 12th International Workshop on Principles on Software

Evolution. 2011, pp. 41-50. 1SBN: 9781450308489. DOI: 10.1145/2024445 .
2024454 (Cited on pages 160, 170).

Li, Z., Liang, P. & Avgeriou, P. Application of knowledge-based approaches in

software architecture: A systematic mapping study. Information and Software

Technology, vol. 55, no. 5. 2013, pp. 777-794. DOI: 10.1016/j.infsof.2012.
11.005. (Cited on page 44).

Luckham, D. C. Event processing for business: organizing the real-time enter-
prise. John Wiley & Sons, 2011 (Cited on page 50).

Luo, Y., Liang, P., Wang, C., Shahin, M. & Zhan, J. Characteristics and Chal-
lenges of Low-Code Development: The Practitioners’ Perspective. July 2021.
DOI: 10.1145/3475716.3475782. (Cited on pages 3, 7, 8, 183).

Maddodi, G., Jansen, S., Guelen, J. P. & Jong, R. de. The Daily Crash : A
Reflection on Continuous Performance Testing. In: ICSEA 2016, The Eleventh
International Conference on Software Engineering Advances. 2016, pp. 100-107.
ISBN: 9781612084985 (Cited on page 26).

Mathijssen, M., Overeem, M. & Jansen, S. Identification of Practices and Capa-
bilities in API Management: A Systematic Literature Review. 2020. URL: http:
//arxiv.org/abs/2006.10481 (Cited on pages 14, 18, 89, 113, 118).
Mathijssen, M., Overeem, M. & Jansen, S. Source Data for the Focus Area
Maturity Model for API Management. 2020. URL: https://arxiv.org/abs/
2007.10611v3 (Cited on pages 18, 89, 95, 107, 111, 113, 117, 118, 178).

https://doi.org/10.1109/MS.2009.52
https://doi.org/10.1145/2997364.2997366
https://doi.org/10.1145/2997364.2997366
https://doi.org/10.1109/APSEC.1999.809608
https://doi.org/10.1109/APSEC.1999.809608
https://www.accenture.com/_acnmedia/PDF-100/Accenture-How-Banks-Can-Thrive-API-Economy.pdf
https://www.accenture.com/_acnmedia/PDF-100/Accenture-How-Banks-Can-Thrive-API-Economy.pdf
https://www.accenture.com/_acnmedia/PDF-100/Accenture-How-Banks-Can-Thrive-API-Economy.pdf
https://doi.org/10.1016/0164-1212(79)90022-0
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1145/2024445.2024454
https://doi.org/10.1145/2024445.2024454
https://doi.org/10.1016/j.infsof.2012.11.005
https://doi.org/10.1016/j.infsof.2012.11.005
https://doi.org/10.1145/3475716.3475782
http://arxiv.org/abs/2006.10481
http://arxiv.org/abs/2006.10481
https://arxiv.org/abs/2007.10611v3
https://arxiv.org/abs/2007.10611v3

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

Bibliography | 197

Maule, A, Emmerich, W & Rosenblum, D. Impact analysis of database schema
changes. 2008 ACM/IEEE 30th International Conference on Software Engineer-
ing. 2008, pp. 451-460. DOI: 10.1145/1368088.1368150 (Cited on page 182).

Maule, A., Emmerich, W. & Rosenblum, D. S. Impact analysis of database
schema changes. In: 2008 ACM/IEEE 30th International Conference on Soft-
ware Engineering. ACM, 2008, pp. 451-460. 1SBN: 978-1-60558-079-1. DOI:
10.1145/1368088.1368150 (Cited on pages 27, 66).

Medjaoui, M., Wilde, E., Mitra, R. & Amundsen, M. Continuous API Manage-
ment: Making the Right Decisions in an Evolving Landscape. O'Reilly Media,
2018. 1SBN: 9781492043553 (Cited on pages 82, 119, 125).

Meijler, T. D., Nytun, J. P., Prinz, A. & Wortmann, H. Supporting fine-grained
generative model-driven evolution. Software & Systems Modeling, vol. 9, no. 3.
2010, pp. 403-424. DOI: 10.1007/s10270-009-0144-1 (Cited on pages 137,
141, 143-146, 151).

Meil3ner, D., Erb, B., Kargl, F. & Tichy, M. retro-A : An Event-sourced Platform
for Serverless Applications with Retroactive Computing Support. In: Proceed-
ings of the 12th ACM International Conference on Distributed and Event-based
Systems. 2018, pp. 76-87. 1sSBN: 9781450357821 (Cited on page 59).

Mendix. The State of Low-Code 2021: a Look Back, the Light Ahead. Tech. rep.
2021 (Cited on pages 7, 8).

Mernik, M., Heering, J. & Sloane, A. M. When and how to develop domain-
specific languages. ACM Computing Surveys, vol. 37, no. 4. 2005, pp. 316-344.
DOI: 10.1145/1118890.1118892 (Cited on pages 141, 143, 146).

Mettler, T., Rohner, P. & Winter, R. Towards A Classification of Maturity Models
in Information Systems. In: Management of the interconnected world. Springer,
2010, pp. 333-340 (Cited on page 88).

Meurice, L., Nagy, C. & Cleve, A. Detecting and Preventing Program Inconsis-
tencies under Database Schema Evolution. 2016 IEEE International Conference
on Software Quality, Reliability and Security (QRS). 2016, pp. 262-273. DOI:
10.1109/QRS.2016.38. (Cited on pages 27, 66).

Meyer, B. Object-Oriented Software Construction. Prentice-Hall, 1988. 1SBN:
0-13-629031-0 (Cited on pages 8, 25).

Michelson, B. M. Event-driven architecture overview. Tech. rep. Patricia Seybold
Group, 2006, pp. 210-1571 (Cited on pages 26, 57).

Murillas, E. G. L. de, Aalst, W. M. van der & Reijers, H. A. Process mining on
databases: Unearthing historical data from redo logs. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), vol. 9253. 2015, pp. 367-385. DOI: 10. 1007/
978-3-319-23063-4_25 (Cited on page 51).

Musil, J., Musil, A. & Biffl, S. SIS: An architecture pattern for collective intelli-
gence systems. ACM International Conference Proceeding Series, vol. 08-12-July.
2015, pp. 21-30. DOI: 10.1145/2855321.2855342 (Cited on page 45).

Neamtiu, I. & Dumitras, T. Cloud software upgrades: Challenges and oppor-
tunities. In: 2011 International Workshop on the Maintenance and Evolution of

https://doi.org/10.1145/1368088.1368150
https://doi.org/10.1145/1368088.1368150
https://doi.org/10.1007/s10270-009-0144-1
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1109/QRS.2016.38
https://doi.org/10.1007/978-3-319-23063-4_25
https://doi.org/10.1007/978-3-319-23063-4_25
https://doi.org/10.1145/2855321.2855342

198 |

[174]
[175]
[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

Bibliography

Service-Oriented and Cloud-Based Systems. 2011, pp. 1-10. 1SBN: 978-1-4577-
0645-5. DOI: 10.1109/MESOCA.2011.6049037 (Cited on page 24).

NEventStore Dev team. NEventStore. 2019. URL: http://neventstore.org
(Cited on page 70).

Nielsen, J. Card Sorting to Discover the Users Model of the Information Space.
Nielsen Norman Group. 1995 (Cited on pages 88, 108, 111, 178).

Okoli, C. A Guide to Conducting a Standalone Systematic Literature Review.
2015 (Cited on pages 14, 89).

Oltrogge, M., Derr, E., Stransky, C., Acar, Y., Fahl, S., Rossow, C., Pellegrino, G.,
Bugiel, S. & Backes, M. The Rise of the Citizen Developer: Assessing the Secu-
rity Impact of Online App Generators. In: Proceedings - I[EEE Symposium on Se-
curity and Privacy. Vol. 2018-May. 2018, pp. 634-647. ISBN: 9781538643525.
DOI: 10.1109/8P.2018.00005 (Cited on page 8).

Onwuegbuzie, A. J. & Leech, N. L. Validity and qualitative research: An oxy-
moron? Quality and Quantity, vol. 41, no. 2. 2007, pp. 233-249. poI: 10.
1007/s11135-006-9000-3 (Cited on page 71).

Ousterhout, J. K. Scripting: Higher-Level Programming for the 21st Century.
Computer, vol. 31, no. 3. 1998, pp. 23-30 (Cited on pages 143, 144).
Overeem, M. & Jansen, S. An Exploration of the ‘It’ in ‘It Depends’: Generative
versus Interpretative Model-Driven Development. In: 5th International Confer-
ence on Model-Driven Engineering and Software Development, MODELSWARD.
2017, pp. 100-111 (Cited on page 19).

Overeem, M. & Jansen, S. Proposing a Framework for Impact Analysis for
Low-Code Development Platforms. In: MODELS °21: Proceedings of the 24th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings (2nd LowCode Workshop). 2021 (Cited
on pages 16, 19).

Overeem, M., Jansen, S. & Fortuin, S. Generative versus Interpretive Model-
Driven Development: Moving past ‘It Depends’. In: Model-Driven Engineering
and Software Development. MODELSWARD 2017. Comm. in Comp. and Inf. Sci-
ence. Ed. by Pires, L., Hammoudi, S. & Selic, B. Vol. 880. Cham: Springer
International Publishing, 2018, pp. 222-246. 1SBN: 9783319947631. DOI: 10.
1007/978-3-319-94764-8_10 (Cited on pages 16, 19, 116, 157, 162).
Overeem, M., Jansen, S. & Mathijssen, M. API Management Maturity of Low-
Code Development Platforms. In: Enterprise, Business-Process and Information
Systems Modeling. Ed. by Augusto Adriano, Gill, A., Nurcan Selmin, Reinhartz-
Berger Iris, Schmidt Rainer & Zdravkovic Jelena. Cham: Springer International
Publishing, 2021, pp. 380-394. 1SBN: 978-3-030-79186-5 (Cited on pages 19,
157, 168).

Overeem, M., Jansen, S. & Mathijssen, M. Evaluations of the API Management
Maturity of Four Low-Code Development Platforms. 2021. po1: 10. 17632/
wdtgbytdpf .1 (Cited on pages 19, 121, 129).

Overeem, M., Mathijssen, M. & Jansen, S. API-m-FAMM: a Focus Area Maturity
Model for API Management. Information and Software Technology, vol. 147.

https://doi.org/10.1109/MESOCA.2011.6049037
http://neventstore.org
https://doi.org/10.1109/SP.2018.00005
https://doi.org/10.1007/s11135-006-9000-3
https://doi.org/10.1007/s11135-006-9000-3
https://doi.org/10.1007/978-3-319-94764-8_10
https://doi.org/10.1007/978-3-319-94764-8_10
https://doi.org/10.17632/wdtg5ytdpf.1
https://doi.org/10.17632/wdtg5ytdpf.1

Bibliography | 199

2022, p. 106890. DOI: https://doi.org/10.1016/j.infsof .2022. 106890
(Cited on pages 16, 18).

[186] Overeem, M., Spoor, M. & Jansen, S. The Dark Side of Event Sourcing: Manag-
ing Data Conversion. In: IEEE 24th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER). 2017, pp. 193-204. 1SBN: 9781509055012
(Cited on pages 16, 18, 44, 46, 47, 65, 66, 157).

[187] Overeem, M., Spoor, M., Jansen, S. & Brinkkemper, S. An Empirical Character-
ization of Event Sourced Systems and Their Schema Evolution - Lessons from
Industry. Journal of Systems and Software, vol. 178, no. 110970. 2021. DpoOI:
10.1016/j.jss.2021.110970 (Cited on pages 16, 18, 161, 164).

[188] Overeem, M., Spoor, M., Jansen, S. & Brinkkemper, S. An Empirical Charac-
terization of Event Sourced Systems and Their Schema Evolution - Lessons
from Industry - Accompanying Anonymized Transcripts. 2021. DOI: 10.17632/
dgbxyn7yw3.1 (Cited on pages 14, 18, 48, 50, 77).

[189] Pantelimon, S. G., Rogojanu, T., Braileanu, A., Stanciu, V. D. & Dobre, C. To-
wards a seamless integration of iot devices with iot platforms using a low-code
approach. [EEE 5th World Forum on Internet of Things, WF-IoT 2019 - Confer-
ence Proceedings. 2019, pp. 566-571. DOI: 10.1109/WF-IoT.2019.8767313
(Cited on pages 7, 156).

[190] Paulk, M. C., Curtis, B., Chrissis, M. B. & Weber, C. V. Capability Maturity
Model, Version 1.1. IEEE software, vol. 10, no. 4. 1993, pp. 18-27 (Cited on
page 88).

[191] Perry, D. E. "Large" abstractions for software engineering. In: Proceedings of the
2nd international workshop on The role of abstraction in software engineering -
ROA ’08. New York, New York, USA: ACM Press, 2008, p. 31. DOI: 10.1145/
1370164.1370172 (Cited on page 4).

[192] Pessoa, L., Fernandes, P., Castro, T., Alves, V., Rodrigues, G. N. & Carvalho,
H. Building reliable and maintainable Dynamic Software Product Lines: An
investigation in the Body Sensor Network domain. Information and Software
Technology, vol. 86. 2017, pp. 54-70. DOI: 10.1016/j . infsof .2017.02.002
(Cited on page 143).

[193] Poell, T., Nieborg, D. & Dijck, J. van. Platformisation. Internet Policy Review,
vol. 8, no. 4. 2019, pp. 1-13. DOI: 10.14763/2019.4.1425 (Cited on pages 7,
82, 116).

[194] Poldk, M. & Holubova, I. REST API management and evolution using MDA. In:
C3S2E ’15: Proceedings of the Eighth International C* Conference on Computer
Science & Software Engineering. 2015, pp. 102-109. 1SBN: 9781450334198.
DOI: 10.1145/2790798.2790820 (Cited on page 126).

[195] Popescuy, D., Garcia, J., Bierhoff, K. & Medvidovic, N. Impact analysis for dis-
tributed event-based systems. Proceedings of the 6th ACM International Con-
ference on Distributed Event-Based Systems, DEBS’12. 2012, pp. 241-251. DOI:
10.1145/2335484.2335511 (Cited on pages 164, 170).

https://doi.org/https://doi.org/10.1016/j.infsof.2022.106890
https://doi.org/10.1016/j.jss.2021.110970
https://doi.org/10.17632/dgbxyn7yw3.1
https://doi.org/10.17632/dgbxyn7yw3.1
https://doi.org/10.1109/WF-IoT.2019.8767313
https://doi.org/10.1145/1370164.1370172
https://doi.org/10.1145/1370164.1370172
https://doi.org/10.1016/j.infsof.2017.02.002
https://doi.org/10.14763/2019.4.1425
https://doi.org/10.1145/2790798.2790820
https://doi.org/10.1145/2335484.2335511

200 | Bibliography

[196] PoppelbuB, J. & Roglinger, M. What Makes A Useful Maturity Model? A Frame-
work of General Design Principles for Maturity Models and its Demonstration
in Business Process Management. 2011 (Cited on page 86).

[197] Prat, N., Comyn-Wattiau, I. & Akoka, J. A Taxonomy of Evaluation Methods
for Information Systems Artifacts. Journal of Management Information Systems,
vol. 32, no. 3. 2015, pp. 229-267 (Cited on pages 108, 111, 178).

[198] Proenca, D. & Borbinha, J. Maturity models for Information Systems: A State
of the Art. Procedia Computer Science, vol. 100. 2016, pp. 1042-1049 (Cited
on pages 106, 107).

[199] Prooph Components. Prooph. 2019. URL: http://getprooph.org/ (Cited on
page 70).

[200] Pulkkinen, V. Continuous deployment of software. In: Proc. of the Seminar
no. 58312107: Cloud-based Software Engineering. 2013, pp. 46-52 (Cited on
page 33).

[201] Qiu, D., Li, B. & Su, Z. An Empirical Analysis of the Co-evolution of Schema
and Code in Database Applications. Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. 2013, pp. 125-135. poI: 10. 1145/
2491411.2491431. (Cited on pages 24, 27).

[202] Rademacher, F., Sorgalla, J. & Sachweh, S. Challenges of Domain-Driven Mi-
croservice Design. IEEE Software. 2018, p. 8. DOI: 10.1109/MS.2018.2141028
(Cited on page 4).

[203] Ralph, P. Fundamentals of software design science. PhD thesis. University of
British Columbia, 2010. (Cited on page 13).

[204] Ralph, P., Baltes, S., Bianculli, D., Dittrich, Y., Felderer, M., Feldt, R., Filieri,
A., Furia, C. A., Graziotin, D., He, P., Hoda, R., Juristo, N., Kitchenham, B. A.,
Robbes, R., Méndez, D., Molleri, J., Spinellis, D., Staron, M., Stol, K., Tamburri,
D. A,, Torchiano, M., Treude, C., Turhan, B. & Vegas, S. Empirical Standards
for Software Engineering Research. 2021. URL: https://arxiv.org/abs/
2010.03525 (Cited on pages 13, 14, 117).

[205] Ralph, P. & Wand, Y. A Proposal for a Formal Definition of the Design Concept.
Tech. rep. 2009, pp. 103-136 (Cited on page 13).

[206] Richardson, C. & Rymer, J. R. New Development Platforms Emerge For Customer-
Facing Applications. 2014 (Cited on pages 3, 7).

[207] Riehle, D., Fraleigh, S., Bucka-Lassen, D. & Omorogbe, N. The architecture
of a UML virtual machine. International Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOSPLA), no. February. 2001,
pp- 327-341. DOI: 10.1145/504311.504306 (Cited on pages 143, 144).

[208] Rinderle-Ma, S., Reichert, M. & Weber, B. On the formal semantics of change
patterns in process-aware information systems. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 5231 LNCS. 2008, pp. 279-293. DOI: 10.1007/978-3-
540-87877-3-21 (Cited on page 170).

http://getprooph.org/
https://doi.org/10.1145/2491411.2491431
https://doi.org/10.1145/2491411.2491431
https://doi.org/10.1109/MS.2018.2141028
https://arxiv.org/abs/2010.03525
https://arxiv.org/abs/2010.03525
https://doi.org/10.1145/504311.504306
https://doi.org/10.1007/978-3-540-87877-3-21
https://doi.org/10.1007/978-3-540-87877-3-21

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

Bibliography | 201

Roddick, J. F. A survey of schema versioning issues for database systems. Infor-

mation and Software Technology, vol. 37, no. 7. Jan. 1995, pp. 383-393. poI:

10.1016/0950-5849(95)91494-K (Cited on pages 31, 182).

Romer, T. H., Lee, D., Voelker, G. M., Wolman, A., Wong, W. a., Baer, J.-L., Ber-
shad, B. N. & Levy, H. M. The structure and performance of interpreters. ACM

SIGPLAN Notices, vol. 31, no. 9. 1996, pp. 150-159. DOI: 10.1145/248209.
237175 (Cited on pages 142, 143).

Rose, L., Paige, R., Kolovos, D. & Polack, F. An analysis of approaches to model

migration. In: Models and Evolution (MoDSE-MCCM) Workshop. 2009, pp. 6—
15. (Cited on pages 163, 169).

Runeson, P. & Host, M. Guidelines for Conducting and Reporting Case Study

Research in Software Engineering. Empirical software engineering, vol. 14, no. 2.
2009, p. 131 (Cited on page 109).

Ruscio, D. D., Kolovos, D., Lara, J. de, Pierantonio, A., Tisi, M. & Wimmer, M.
Low-code development and model-driven engineering: two sides of the same

coin? Software and Systems Modeling. Jan. 2022. DOI: 10.1007/s10270-021-
00970-2. (Cited on page 3).

Saaty, T. How to make a decision: The analytic hierarchy process. European

Journal of Operational Research, vol. 48, no. 1. 1990, pp. 9-26. DOI: 10.1016/

0377-2217(90)90057-1. (Cited on pages 146, 149).

Sadalage, P. J. & Fowler, M. NoSQL distilled: a brief guide to the emerging

world of polyglot persistence. Addison-Wesley, 2012 (Cited on pages 27, 31,

68).

Sadri, F. & Kowalski, R. Variants of the Event Calculus Fariba Sadri and Robert

Kowalski Abstract. Proceedings of the Twelfth International Conference on Logic

Programming, no. October. 1995, pp. 67-81 (Cited on page 50).

Sahay, A., Indamutsa, A., Di Ruscio, D. & Pierantonio, A. Supporting the under-
standing and comparison of low-code development platforms. In: Proceedings

- 46th Euromicro Conference on Software Engineering and Advanced Applica-

tions, SEAA 2020. 2020, pp. 171-178. 1SBN: 9781728195322. poI: 10.1109/

SEAA51224.2020.00036 (Cited on pages 8, 156).

Sanchez-Puchol, F. & Pastor-Collado, J. A. Focus area maturity models: A com-
parative review. Lecture Notes in Business Information Processing, vol. 299.
2017, pp. 531-544. por: 10. 1007 /978 -3 -319-65930-5_42 (Cited on
page 182).

Sanchis, R., Garcia-Perales, O., Fraile, F. & Poler, R. Low-code as enabler of dig-
ital transformation in manufacturing industry. Applied Sciences (Switzerland),
vol. 10, no. 1. 2020. DOI: 10.3390/app10010012 (Cited on pages 8, 116, 156).

Santos, J. C. S., Sejfia, A., Corrello, T., Gadenkanahalli, S. & Mirakhorli, M.
Achilles heel of plug-and-Play software architectures: A grounded theory based
approach. ESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint Meeting
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 2019, pp. 671-682. DOI: 10.1145/3338906. 3338969
(Cited on page 46).

https://doi.org/10.1016/0950-5849(95)91494-K
https://doi.org/10.1145/248209.237175
https://doi.org/10.1145/248209.237175
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1016/0377-2217(90)90057-i
https://doi.org/10.1016/0377-2217(90)90057-i
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1007/978-3-319-65930-5_42
https://doi.org/10.3390/app10010012
https://doi.org/10.1145/3338906.3338969

202 |

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

Bibliography

Santos, W. APIs Show Faster Growth Rate in 2019 Than Previous Years. 2019.
URL: https : //www . programmableweb . com/ news / apis - show - faster -
growth-rate-2019 - previous - years /research/2019/07 /17 (Cited on
page 82).

Sato, D. ParallelChange. 2014. URL: http ://martinfowler . com/bliki /
ParallelChange.html (Cited on page 35).

Saur, K., Dumitras, T. & Hicks, M. Evolving NoSQL Databases Without Down-
time. In: IEEE International Conference on Software Maintenance and Evolution
(ICSME). 2016, pp. 166-176. (Cited on pages 26, 27, 68).

Scherzinger, S., Klettke, M. & Storl, U. Managing Schema Evolution in NoSQL
Data Stores. In: Proceedings of the 14th International Symposium on Database
Programming Languages (DBPL 2013). Ed. by Green, T. J. & Schmitt, A. 2013.
(Cited on pages 26, 27, 30, 68).

Scherzinger, S., Klettke, M. & Storl, U. Cleager: Eager Schema Evolution in
NoSQL Document Stores. Datenbanksysteme fiir Business, Technologie und Web
(BTW 2015). 2015, pp. 659-662 (Cited on pages 24, 31).

Schramm, A., Preulsner, A., Heinrich, M. & Vogel, L. Rapid UI development
for enterprise applications: Combining manual and model-driven techniques.
Models, vol. 6394 LNCS, no. PART 1. 2010, pp. 271-285. poI: 10.1007/978-
3-642-16145-2_19. (Cited on page 143).

Schunselaar, D. M. M., Gulden, J, Schuur, H. van der & Reijers, H. A. A Sys-
tematic Evaluation of Enterprise Modelling Approaches on Their Applicability
to Automatically Generate Software. In: 18th IEEE Conference on Business In-
formatics. 2016 (Cited on page 146).

Schuur, H. van der, Ven, E. van de, Jong, R. de, Schunselaar, D., Reijers, H. A.,
Overeem, M., Graaf, M. de, Jansen, S. & Brinkkemper, S. NEXT: Generating
tailored ERP applications from ontological enterprise models. In: IFIP Working
Conference on The Practice of Enterprise Modeling. Vol. 305. Springer, 2017,
pp- 283-298. 1SBN: 9783319702407. DOI: 10.1007/978-3-319-70241-4_19
(Cited on pages 17, 161, 162).

Sein, M. K.., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R. & Sein, M. K..
Action Design Research. Source: MIS Quarterly, vol. 35, no. 1. 2011, pp. 37-56.
DOI: 10.2307/23043488 (Cited on page 70).

Slotos, T. The star pattern - Representing domain concepts in a uniform way.
ACM International Conference Proceeding Series, no. July 2016. 2016, p. 8. DOI:
10.1145/3011784.3011792 (Cited on page 45).

Sorgalla, J., Rademacher, F., Sachweh, S. & Ziindorf, A. On Collaborative
Model-driven Development of Microservices. In: MSE Workshop @ STAF2018.
2018, pp. 1-8. (Cited on page 4).

Spinellis, D. The changing role of the software architect. IEEE Software, vol. 33.
6 Nov. 2016, pp. 4-6. DOI: 10.1109/MS.2016.133. (Cited on page 5).

Spruit, M. & Roling, M. ISFAM: The Information Security Focus Area Maturity
Model. 2014 (Cited on pages 106-108, 182).

https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
http://martinfowler.com/bliki/ParallelChange.html
http://martinfowler.com/bliki/ParallelChange.html
https://doi.org/10.1007/978-3-642-16145-2_19
https://doi.org/10.1007/978-3-642-16145-2_19
https://doi.org/10.1007/978-3-319-70241-4_19
https://doi.org/10.2307/23043488
https://doi.org/10.1145/3011784.3011792
https://doi.org/10.1109/MS.2016.133

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

Bibliography | 203

Stahl, T., Volter, M., Bettin, J., Haase, A. & Helsen, S. Model-Driven Software
Development: Technology, Engineering, Management. 2006, p. 446. ISBN: 978-
0-470-02570-3 (Cited on pages 141, 143).

Steenbergen, M. van, Bos, R., Brinkkemper, S., Weerd, I. van de & Bekkers, W.
The design of focus area maturity models. In: International Conference on De-
sign Science Research in Information Systems. Vol. 662. Berlin: Springer, 2010,
pp. 317-332 (Cited on pages 13, 18, 82, 88, 118, 178).

Steenbergen, M. van, Bos, R., Brinkkemper, S., Weerd, 1. van de & Bekkers, W.
Improving IS Functions Step by Step: The use of focus area maturity models.
Scandinavian Journal of Information Systems, vol. 25, no. 2. 2013, pp. 35-56
(Cited on pages 13, 18, 82, 88, 107, 178).

Stol, K.-J., Ralph, P. & Fitzgerald, B. Grounded Theory in Software Engineer-
ing Research : A Critical Review and Guidelines. Proceedings of the 37th In-
ternational Conference on Software Engineering (ICSE 2015), no. Aug. 2015,
pp- 120-131. DOI: http://dx.doi.org/10.1145/2884781.2884833 (Cited
on page 47).

Sundharam, S. M., Altmeyer, S. & Navet, N. Model Interpretation for an AU-
TOSAR compliant Engine Control Function. In: 7th International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems (WA-
TERS). 2016 (Cited on page 143).

Svahnberg, M., Wohlin, C., Lundberg, L. & Mattsson, M. A Quality-Driven
Decision-Support Method for Identifying Software Architecture Candidates.
International Journal of Software Engineering and Knowledge Engineering, vol. 13,
no. 05. 2003, pp. 547-573. DoOI: 10 . 1142/S0218194003001421 (Cited on
page 138).

Taibi, D., Lenarduzzi, V. & Pahl, C. Architectural patterns for microservices: A
systematic mapping study. CLOSER 2018 - Proceedings of the 8th International
Conference on Cloud Computing and Services Science, vol. 2018-Janua. 2018,
pp. 221-232. DOI: 10.5220/0006798302210232 (Cited on page 44).

Tamburri, D. A. & Kazman, R. General methods for software architecture re-
covery: a potential approach and its evaluation. Empirical Software Engineer-
ing, vol. 23, no. 3. 2018, pp. 1457-1489. DOI: 10.1007/s10664-017-9543~z2
(Cited on page 46).

Tan, L. & Katayama, T. Meta Operations for Type Management in Object-
Oriented Databases. In: DOOD. 1989, pp. 241-258 (Cited on page 31).
Tankovi¢, N. Model Driven Development Approaches : Comparison and Opportu-
nities. Tech. rep. (Cited on pages 141, 143-146).

Tankovié¢, N., Vukoti¢, D. & Zagar, M. Rethinking Model Driven Development
: Analysis and Opportunities. Information Technology Interfaces (ITI), Proceed-
ings of the ITI 2012 34th International Conference. 2012, pp. 505-510. DOI:
10.2498/iti.2012.0414. (Cited on pages 143-145).

The Apache Software Foundation. Apache Avro. 2019. URL: http://avro.
apache.org/ (Cited on pages 57, 60, 68).

https://doi.org/http://dx.doi.org/10.1145/2884781.2884833
https://doi.org/10.1142/S0218194003001421
https://doi.org/10.5220/0006798302210232
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.2498/iti.2012.0414
http://avro.apache.org/
http://avro.apache.org/

204 |

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

Bibliography

Thibault, S. & Consel, C. A framework for application generator design. ACM
SIGSOFT Software Engineering Notes, vol. 22, no. 3, May 1997. 1997, pp. 131-
135. (Cited on page 143).

Thibault, S. A., Marlet, R. & Consel, C. Domain-Specific Languages : From De-
sign to Implementation Application to Video Device Drivers Generation. IEEE
Transactions on Software Engineering, vol. 25, no. 3. 1999, pp. 363-377 (Cited
on page 143).

Tisi, M., Mottu, J. M., Kolovos, D. S., Lara, J. de, Guerra, E., Di Ruscio, D.,
Pierantonio, A. & Wimmer, M. Lowcomote: Training the next generation of ex-
perts in scalable low-code engineering platforms. CEUR Workshop Proceedings,
vol. 2405. 2019 (Cited on page 183).

Toulmé, A. Presentation of EMF Compare Utility. In: Eclipse Modeling Sympo-
sium. 2006 (Cited on page 169).

Tragatschnig, S., Stevanetic, S. & Zdun, U. Supporting the evolution of event-
driven service-oriented architectures using change patterns. Information and
Software Technology, vol. 100. 2018, pp. 133-146. DOI: 10.1016/j . infsof .
2018.04.005 (Cited on page 170).

Tung, T. Accenture API Management Suite API Maturity Model. 2014. URL:
https://expydoc . com/doc /4730985 /download-pdf (Cited on pages 83,
88).

Varrd, G., Anjorin, A. & Schiirr, A. Unification of compiled and interpreter-
based pattern matching techniques. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 7349 LNCS. 2012, pp. 368-383. DOI: 10.1007/978-3-642-
31491-9_28 (Cited on pages 143, 144).

Vassiliadis, P. A survey of Extract transform Load technology. International
Journal of Data Warehousing & Mining, vol. 5, no. 3. 2009, pp. 1-27. DOI:
10.4018/jdwm.2009070101. (Cited on page 50).

Ven, J. S. van der, Jansen, A. G. J., Nijhuis, J. A. G. & Bosch, J. Design decisions:
The bridge between rationale and architecture. Rationale Management in Soft-
ware Engineering. 2006, pp. 329-348. DOI: 10.1007/978-3-540-30998-7_16
(Cited on pages 138, 147).

Vernon, V. Implementing Domain-Driven Design. Addison-Wesley, 2013 (Cited
on page 50).

Vincent, P., lijima, K., Driver, M., Wong, J. & Natis, Y. Magic Quadrant for En-
terprise Low-Code Application Platforms. Tech. rep. September. Gartner, 2019,
pp- 1-33 (Cited on pages 18, 117, 124, 126).

Vinju, J. Kan de biologie een rol spelen in het oplossen van problemen die
gepaard gaan met de groeiende technologische complexiteit van onze soft-
ware? In: Hoe zwaar is licht? Ed. by de Graaf, B. & Rinnooy Kan, A. Uitgeverij
Balans, 2017 (Cited on page 4).

Visser, J. Change is the constant: keynote. Ercim News, vol. 2012. 2012, pp. 3—
3 (Cited on page 4).

https://doi.org/10.1016/j.infsof.2018.04.005
https://doi.org/10.1016/j.infsof.2018.04.005
https://expydoc.com/doc/4730985/download-pdf
https://doi.org/10.1007/978-3-642-31491-9_28
https://doi.org/10.1007/978-3-642-31491-9_28
https://doi.org/10.4018/jdwm.2009070101
https://doi.org/10.1007/978-3-540-30998-7_16

Bibliography | 205

[259] Voelter, M. Best Practices for DSLs and Model-Driven Software Development.
Journal of Object Technology, vol. 8, no. 6. 2009, pp. 79-102. (Cited on pages 141,
143, 145, 146).

[260] Voelter, M. & Visser, E. Product Line Engineering Using Domain-Specific Lan-
guages. 15th International Software Product Line Conference, no. Section II.
2011, pp. 70-79. po1: 10.1109/SPLC.2011.25 (Cited on pages 143, 145).

[261] Vogels, W. Eventually consistent. Communications of the ACM, vol. 52, no. 1.
2009, pp. 40-44 (Cited on pages 9, 25, 61).

[262] Wachsmuth, G. Metamodel adaptation and model co-adaptation. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 4609 LNCS. 2007, pp. 600-624. DOI:
10.1007/978-3-540-73589-2_28. (Cited on page 169).

[263] Waszkowski, R. Low-code platform for automating business processes in man-
ufacturing. IFAC-PapersOnlLine, vol. 52. 10 2019, pp. 376-381. poI: 10.1016/
j.ifacol.2019.10.060. (Cited on page 3).

[264] Weber, B., Rinderle, S. & Reichert, M. Change patterns and change support
features in process-aware information systems. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 4495 LNCS. 2007, pp. 574-588. DOI: 10.1007/978-3-
540-72988-4_40 (Cited on page 170).

[265] Weber, B., Rinderle-Ma, S. & Reichert, M. Change Support in Process-Aware
Information Systems-A Pattern-Based Analysis. Data Knowledge Eng, vol. 66,
no. 3. 2007, pp. 438-466. (Cited on page 168).

[266] Weir, L. Enterprise API Management: Design and Deliver Valuable Business
APIs. Packt Publishing Ltd, 2019 (Cited on pages 9, 82, 107, 125).

[267] Wieringa, R. J. Design Science Methodology for Information Systems and Soft-
ware Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. 1SBN:
978-3-662-43838-1. DOI: 10.1007/978-3-662-43839-8. (Cited on page 13).

[268] Wlaschin, S. Domain Modeling Made Functional. The Pragmatic Bookshelf,
2018 (Cited on page 59).

[269] Wohlin, C. Empirical Software Engineering Research with Industry: Top 10
Challenges. In: CESI ’14: Proceedings of the 1st International Workshop on
Conducting Empirical Studies in Industry. IEEE, 2013, pp. 43-46 (Cited on
page 16).

[270] Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering. In: 18th International Conference on Eval-
uation and Assessment in Software Engineering (EASE 2014). 2014, pp. 1-10.
ISBN: 9781450324762. DOI: 10.1145/2601248.2601268. (Cited on pages 14,
47, 141).

[271] WSO2. API Management Platform Technical Evaluation Framework. 2015.
URL: https://wso2.com/whitepapers/api-management-platform-technical-
evaluation-framework/ (Cited on page 84).

[272] Wu, E., Diao, Y. & Rizvi, S. High-performance complex event processing over
streams. In: Proceedings of the 2006 ACM SIGMOD international conference on

https://doi.org/10.1109/SPLC.2011.25
https://doi.org/10.1007/978-3-540-73589-2_28
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1007/978-3-540-72988-4_40
https://doi.org/10.1007/978-3-540-72988-4_40
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1145/2601248.2601268
https://wso2.com/whitepapers/api-management-platform-technical-evaluation-framework/
https://wso2.com/whitepapers/api-management-platform-technical-evaluation-framework/

206 |

[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

Bibliography

Management of data - SIGMOD ’06. 2006, p. 407. 1SBN: 1595934340. DOI:
10.1145/1142473.1142520. (Cited on page 50).

Xu, L. & Brinkkemper, S. Concepts of product software. European Journal of In-
formation Systems, vol. 16, no. 5. 2007, pp. 531-541. DOI: 10.1057/palgrave.
ejis.3000703 (Cited on page 8).

Yin, R. K. Case Study Research and Applications: Design and Methods. 5th
edition. Thousand Oaks, California: Sage Publications, Inc, 2017. ISBN: 978-1-
4522-4256-9 (Cited on page 14).

Young, G. CQRS and Event Sourcing. 2010. URL: http://codebetter.com/
gregyoung/2010/02/13/cqrs-and-event-sourcing (Cited on pages 5, 24,
50, 61, 173).

Young, G. A Decade of DDD, CQRS, Event Sourcing - Domain-Driven Design
Europe 2016. 2016. URL: https://www.youtube.com/watch?v=LDWOQWie21s
(Cited on page 24).

Young, G. Versioning in an Event Sourced System. Leanpub, 2017 (Cited on
pages 50, 65, 69).

Zhong, Y., Li, W. & Wang, J. Using event sourcing and CQRS to build a high
performance point trading system. ACM International Conference Proceeding
Series. 2019, pp. 16-19. DOI: 10.1145/3317614.3317632 (Cited on pages 50,
179).

Zhu, L., Aurum, A., Gorton, I. & Jeffery, R. Tradeoff and Sensitivity Analysis in
Software Architecture Evaluation Using Analytic Hierarchy Process. Software
Quality Journal, vol. 13, no. 4. 2005, pp. 357-375. DOI: 10.1007/s11219-
005-4251-0 (Cited on page 138).

Zhu, M. Model-Driven Game Development Addressing Architectural Diversity
and Game Engine-Integration. PhD thesis. Norwegian University of Science
and Technology, 2014 (Cited on page 143).

Zolotas, C., Chatzidimitriou, K. C. & Symeonidis, A. L. RESTsec: a low-code
platform for generating secure by design enterprise services. Enterprise Infor-
mation Systems, vol. 12, no. 8-9. Oct. 2018, pp. 1007-1033. pDOI: 10. 1080/
17517575.2018.1462403 (Cited on pages 7, 156).

https://doi.org/10.1145/1142473.1142520
https://doi.org/10.1057/palgrave.ejis.3000703
https://doi.org/10.1057/palgrave.ejis.3000703
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing
https://www.youtube.com/watch?v=LDW0QWie21s
https://doi.org/10.1145/3317614.3317632
https://doi.org/10.1007/s11219-005-4251-0
https://doi.org/10.1007/s11219-005-4251-0
https://doi.org/10.1080/17517575.2018.1462403
https://doi.org/10.1080/17517575.2018.1462403

Summary

Our world is driven by software, from everything we do online to the cars we drive.
The role software plays is so large that you could say that every company is a soft-
ware company. Companies have to partake in this transformation to a software-driven
world but face various challenges in doing so. There is a scarcity of software engineers
which only appears to be increasing. Next to that, software development is complex
and requires a joint effort of software engineers and domain experts. Finally, when the
software is developed, the process does not stop. Companies do not operate in a vac-
uum; they are part of a larger world inhabited by customers, suppliers, governments,
and competitors. Therefore, companies have to constantly update their software to
comply with wishes and demands.

A recent development, low-code platforms, could be the solution to these challenges.
The term low-code emphasizes that these platforms enable the development of soft-
ware systems with a low effort of coding. Through the introduction of higher-level
abstractions, such as domain-specific models, these platforms enable citizen developers
(professionals without specific software development training) to develop software
systems. Enabling untrained professionals to participate in the software development
process not only means that fewer trained IT personnel are needed, but that the busi-
ness side is also automatically more involved in the development of the software.

Low-code platforms have to live up to certain expectations to be successful. They
have to support the development of modern, cloud-based applications. Successful soft-
ware is no longer an application accessible only through a company computer, modern
applications are always available from every device. Not only are they accessible for
humans, we also expect these applications to be open for communication with other
systems. This means that other companies can interact with the data and processes
inside these applications to create collaborations. Finally, low-code platforms need to
support companies in the long run. Maintaining software should be as easy as creating
new software.

This dissertation presents, in three parts, the evolution of low-code platforms and
how they support the new generation of digital companies. In each of these three
parts the software architect and his role in the development of low-code platforms
stands central.

The first part discusses software evolution in event sourced systems. Event-driven
architectures enable the development of large and complex software systems. Event
sourcing is a form of event-driven architecture that offers a lot of benefits for the
software system by storing every change as an event. An increased flexibility in making

208 | Summary

future changes is gained because the full history of a system is stored. However, event
sourcing also introduces new challenges in the evolution of a software system. Various
evolution techniques are presented that can be applied to confront these challenges.

API management in software ecosystems is central in the second part. Modern soft-
ware systems are open, which means that external parties can connect with a software
system to exchange data. Through these connections software ecosystems can grow.
In this ecosystem, the central software system is enriched by external complementors.
These connections are created through Application Programming Interfaces, abbrevi-
ated APIs. The management of these APIs is essential for the success of software
ecosystems. Low-code platforms have to support these processes and enable them for
citizen developers to be successful. The API-m-FAMM gives software architects a tool to
evaluate and plan the improvement of their API management capabilities.

Evolution supporting architecture is the third and final part. Changes that are made
within a low-code platform have an impact on other parts of the platform or even on
complementors. Some of these changes, for example, require data conversion. The
analysis of the impact is difficult because of the higher-level abstractions offered by
low-code platforms. For companies using low-code platforms this analysis is essential
in maintaining control over the software. The Impact Analysis for Low-Code Develop-
ment Platforms framework allows software architects to design the process of software
evolution, making sure that companies stay in control of their systems.

Nederlandse samenvatting

Onze wereld kan niet meer zonder software, van alles wat we online doen tot aan
de auto’s die we rijden. Software speelt een dermate grote rol dat je kan stellen
dat elk bedrijf tegenwoordig een softwarebedrijf is. Bedrijven moeten mee doen aan
deze transformatie naar een software-gedreven wereld, maar komen verschillende
uitdagingen tegen. Zo is er een groot tekort aan professionele softwareontwikkelaars
en het ziet er naar uit dat dit tekort alleen maar groter gaat worden. Daarnaast is het
ontwikkelen van succesvolle software complex en vereist het de samenwerking tussen
softwareontwikkelaars en domeinexperts. En als de software eenmaal ontwikkelt is
stopt het proces niet. Bedrijven opereren niet in een vacuiim, maar zijn onderdeel
van een wereld met klanten, leveranciers, concurrenten en overheden. Deze partijen
zorgen ervoor dat bedrijven hun software constant moeten aanpassen om zo te zorgen
dat deze blijft voldoen aan wensen en eisen.

Low-code platformen, een recente ontwikkeling, zouden wel eens de oplossing kun-
nen zijn voor deze uitdagingen. De term low-code refereert aan de minimale hoeveel-
heid code die nodig is om applicaties te ontwikkelen. Door het aanbieden van hogere
abstracties, zoals domein specifieke modellen, maken deze platformen het mogelijk
voor professionals zonder programmeer-training om applicaties te ontwikkelen. Deze
professionals zijn veelal de domeinexperts die voorheen alleen konden vertellen wat
ze nodig hadden. Door deze platformen zijn er dus niet alleen minder getrainde ont-
wikkelaars nodig, maar zijn de domeinexperts ook automatisch meer betrokken.

Om succesvol te zijn moeten low-code platformen de verwachtingen wel waar ma-
ken. Zo moeten ze het ontwikkelen van moderne cloud-applicaties ondersteunen. Suc-
cesvolle applicaties zijn niet langer alleen bereikbaar via een bedrijfscomputer, ze zijn
beschikbaar vanaf elk apparaat. Daarnaast moeten deze applicaties ook beschikbaar
zijn voor communicatie met andere software systemen. Dat betekent dat andere be-
drijven toegang kunnen krijgen tot de data en de processen zodat ze kunnen samen-
werken. En als laatste moet applicaties bijwerken net zo makkelijk zijn als nieuwe
applicaties ontwikkelen.

In dit proefschrift bespreken we in drie delen de evolutie van low-code platformen
en hoe zij de nieuwe generatie digitale bedrijven ondersteunen. In elk deel staat de
software architect en zijn rol in de ontwikkeling van een low-code platform centraal.

Het eerste deel bespreekt software evolutie in event sourced systemen. Event-gedreven
architecturen maken het mogelijk om grote en complexe software systemen te ontwik-
kelen. Event sourcing is een specifieke event-gedreven architectuurstijl die veel voor-
delen biedt aan architecten. In een event sourced systeem wordt elke wijziging in de

210 | Samenvatting

applicatie bijgehouden. Hierdoor is de volledige historie beschikbaar waardoor er flexi-
biliteit voor toekomstige aanpassingen ontstaat. De evolutie van het systeem wordt
echter uitdagender, omdat de historie continue meegenomen moet worden. Software
architecten kunnen met de gepresenteerde evolutie technieken deze uitdagingen het
hoofd bieden.

API beheer in software ecosystemen staat centraal in het tweede gedeelte. Moderne
applicaties ondersteunen koppelingen met externe software systemen om data uit te
wisselen. Hierdoor kunnen zich software ecosystemen vormen waarin de centrale ap-
plicatie wordt verrijkt door externe partijen. In deze ecosystemen worden Applicatie
Programmeer Interfaces (API's) gebruikt om te communiceren. Het beheren van deze
APT’s is essentieel voor het succes van een software ecosysteem. Low-code platformen
moeten het mogelijk maken voor professionals zonder programmeer-training om deze
beheerstaken uit te voeren. Het ontwikkelde API-m-FAMM geeft software architec-
ten een hulpmiddel om de volwassenheid van hun API beheer mogelijkheden vast te
stellen en verbeteringen te plannen.

Evolutie ondersteunende architectuur is het derde en laatste deel van dit proefschrift.
Er worden continue veranderingen gemaakt in een low-code platform, en deze veran-
deringen hebben impact op andere onderdelen van het platform, of zelfs op externe
partijen die gebruik maken van de API’s. Voorbeelden hiervan zijn veranderingen die
het nodig maken om de bestaande data te transformeren. De nieuwe abstracties in
low-code platformen maken het niet eenvoudig om deze analyse te doen. Voor be-
drijven die gebruik maken van deze platformen is deze analyse noodzakelijk om grip
te houden op de software. Het Impact Analysis for Low-Code Development Platforms
framework toont software architecten hoe ze deze analyse mogelijk maken, zodat be-
drijven hun applicaties onder controle houden.

Publication List

Publications Included in this Dissertation

M. Overeem, M. Mathijssen, and S. Jansen. API-m-FAMM: a Focus Area Maturity Model
for API Management. In Information and Software Technology, volume 147 (2022),
106890.

M. Overeem, S. Jansen. (2021). Proposing a Framework for Impact Analysis for Low-
Code Development Platforms. In MODELS 21: Proceedings of the 24thACM/IEEE Inter-
national Conference on Model Driven Engineering Languagesand Systems: Compan-
ion Proceedings (2nd LowCode Workshop).

M. Overeem, M. Mathijssen, and S. Jansen. (2021). API Management Maturity of
Low-Code Development Platforms. In Enterprise, Business-Process and Information Sys-
tems Modeling. BPMDS 2021, EMMSAD 2021. Lecture Notes in Business Information
Processing, vol 421. Springer, Cham.

M. Overeem, M. Spoor, S. Jansen, and S. Brinkkemper. (2021). An Empirical Charac-
terization of Event Sourced Systems and Their Schema Evolution - Lessons from Industry.
In Journal of Systems and Software: In Practice, volume 178 (2021), 110970.

M. Overeem, S. Jansen, and S. Fortuin. (2018). Generative versus Interpretive Model-
Driven Development: Moving Past ‘It Depends’. In Pires L., Hammoudi S., Selic B. (eds)
Model-Driven Engineering and Software Development. MODELSWARD 2017. Com-
munications in Computer and Information Science, vol 880. Springer, Cham.

M. Overeem, M. Spoor, and S. Jansen. (2017). The Dark Side of Event Sourcing: Man-
aging Data Conversion. In Proceedings of the 24th Conference on Software Analysis,
Evolution, and Reengineering (SANER 2017), pages 193-204.

Other Publications not Included

G. Maddodi, S. Jansen, and M. Overeem. (2020). Aggregate Architecture Simulation
in Event-Sourcing Applications using Layered Queuing Networks. In Proceedings of the
2020 ACM/SPEC International Conference on Performance Engineering (ICPE "20).
M. de Graaf, and M. Overeem. (2019). Tackling Complexity in ERP Software: a Love
Song to Bounded Contexts. In Domain Driven Design, The First 15 Years (Leanpub).

212 | Publication List

M.Overeem, and S. Jansen. (2018). Continuous Migration of Mass Customized Applica-
tions. In Proceedings of the 17th Belgium-Netherlands Software Evolution Workshop
(BENEVOL 2018).

H. van der Schuur, E. van de Ven, R. de Jong, D. Schunselaar, H. Reijers, M. Overeem,
M. de Graaf, S. Jansen, and S. Brinkkemper. (2017). NEXT: Generating Tailored ERP
Applications from Ontological Enterprise Models. In Proceedings of the 10th IFIP WG
8.1 Working Conference on the Practice of Enterprise Modeling (POEM’17).

M. Overeem, S. Jansen. (2017). An Exploration of the ‘It in ‘It Depends: Generative
versus Interpretive Model-Driven Development. In Proceedings of the 5th International
Conference on Model-Driven Engineering and Software Development (MODELSWARD
2017).

P. Jansson, J. Jeuring, L. Cabenda, G. Engels, J. Kleerekoper, S. Mak, M. Overeem,
and K. Visser. (2007). Testing Properties of Generic Functions. In Implementation and
Application of Functional Languages, IFL 2006. Lecture Notes in Computer Science,
vol 4449.

Accompanying Data Packages

M. Overeem, S. Jansen, and M. Mathijssen. (2021). Evaluations of the API Management
Maturity of Four Low-Code Development Platforms.
https://data.mendeley.com/datasets/wdtgbytdpf/1

M. Overeem, M. Spoor, S. Jansen, and S. Brinkkemper. (2021). An Empirical Charac-
terization of Event Sourced Systems and Their Schema Evolution - Lessons from Industry
- Accompanying Anonymized Transcripts.
https://data.mendeley.com/datasets/dgbxyn7yw3/1

M. Mathijssen, M. Overeem, and S. Jansen. (2020). Source Data for the Focus Area
Maturity Model for API Management.

https://arxiv.org/abs/ 2007.10611v3

M. Mathijssen, M. Overeem, and S. Jansen. (2020). Identification of Practices and
Capabilities in API Management: A Systematic Literature Review.
http://arxiv.org/abs/2006.10481

Presentations at Scientific and Industrial Conferences!

Low-Code Platforms, Tales from a Software Architect. (2022). At exec(ut).
A system with thousands of event types. (2021). At EventSourcing Live 2021.

Event system evolution - A Scientific Study on Event Sourcing, Lessons from Industry.
(2021). At EventSourcing Live 2021.

Low code: AFAS software. (2021). Episode 24 of the DevTalks podcast.
A technical introduction to AFAS Focus. (2020). At the Mendix Tech Lead meeting.
103 years of event sourcing experience. (2019). At DDD Vienna Meetup.

ISlides and recordings, if available, can be found at https://www.movereem.nl/pubspres

https://data.mendeley.com/datasets/wdtg5ytdpf/1
https://data.mendeley.com/datasets/dgbxyn7yw3/1
https://arxiv.org/abs/
http://arxiv.org/abs/2006.10481
https://www.movereem.nl/pubspres

Publication List | 213

Applying event sourcing and CQRS in a large ERP system. (2019). At DDD Vienna
Meetup.

The last barrier: code the coder. (2019). At Emerce Next.

The Dark Side of Event Sourcing: Managing Data Conversion. (2018). At Landelijk
Architectuur Congres (LAC) 2018.

Building an event sourced system in .NET. (2018). At Dutch .NET Group Meetup.
Event Sourcing after launch. (2018). At Drukwerkdeal.nl Developer Meetup.

Event Sourcing after launch, how to evolve your event store along with your application.
(2018). At DDDEurope 2018.

The Dark Side of Event Sourcing: Managing Data Conversion. (2017). At KanDDDinsky
2017.

Event Sourcing after launch, how to evolve your event store along with your application.
(2017). At TechDays 2017, Netherlands.

The Dark Side of Event Sourcing. (2017). At DomCode meetup.
The Dark Side of Event Sourcing. (2017). At DDD Belgium Meetup.

Safer Software Upgrades With Continuous Deployment and Model Driven Development.
(2016). At the Belgium-Netherlands Software Evolution Workshop (BENEVOL) 2016.

Curriculum Vitae

Michiel Overeem was born on June 15th, 1984 in The Netherlands. He studied Com-
puter Science at Utrecht University from 2002 until 2007, obtaining a Master’s degree
in Software Technology in August, 2007. During his Master’s education he already
started working as a Software Engineer. Until 2011 he worked at DEVENTit B.V., an in-
dependent software vendor in The Netherlands. He then joined AFAS Software B.V. as
a Software Architect and became a Lead Software Architect in 2013. He is part of the
team responsible for the development of AFAS Focus, an in-house low-code platform.
In 2015 he joined the research project AMUSE, a collaboration between Universiteit
Utrecht, Vrije Universiteit Amsterdam, and AFAS Software, as a PhD candidate. He
finished his PhD research in 2022.

Michiel’s main research interests are in low-code platforms, event sourced systems,
and the microservice architecture style. Next to that he enjoys long runs, training in
the local CrossFit box, and spending time with his wife and two sons.

SIKS Dissertation Series

2016 01

02

03

04
05

06
07

08

09

10

11
12

13

14
15

16

17
18
19
20
21

Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Ma-
chines

Michiel Christiaan Meulendijk (UU), Optimizing medication reviews
through decision support: prescribing a better pill to swallow

Maya Sappelli (RUN), Knowledge Work in Context: User Centered
Knowledge Worker Support

Laurens Rietveld (VU), Publishing and Consuming Linked Data

Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and
an Application in Explaining Missing Answers

Michel Wilson (TUD), Robust scheduling in an uncertain environment
Jeroen de Man (VU), Measuring and modeling negative emotions for
virtual training

Matje van de Camp (TiU), A Link to the Past: Constructing Historical
Social Networks from Unstructured Data

Archana Nottamkandath (VU), Trusting Crowdsourced Information on
Cultural Artefacts

George Karafotias (VUA), Parameter Control for Evolutionary Algo-
rithms

Anne Schuth (UVA), Search Engines that Learn from Their Users

Max Knobbout (UU), Logics for Modelling and Verifying Normative
Multi-Agent Systems

Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Devel-
opment in West Africa - An ICT4D Approach

Ravi Khadka (UU), Revisiting Legacy Software System Modernization
Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects,
Algorithms and Experiments

Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn
from Human Reward

Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
Albert Merofio Pefiuela (VU), Refining Statistical Data on the Web

Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
Daan Odijk (UVA), Context & Semantics in News & Web Search
Alejandro Moreno Célleri (UT), From Traditional to Interactive
Playspaces: Automatic Analysis of Player Behavior in the Interactive Tag
Playground

218 |

SIKS Dissertation Series

22

23
24

25

26

27
28

29
30
31
32
33
34
35
36
37
38

39

40
41

42
43
44
45

46
47

Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging
Systems

Fei Cai (UVA), Query Auto Completion in Information Retrieval

Brend Wanders (UT), Repurposing and Probabilistic Integration of Data;
An Tterative and data model independent approach

Julia Kiseleva (TU/e), Using Contextual Information to Understand
Searching and Browsing Behavior

Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computa-
tional Models to Study the Role of Human Awareness and Control in
Behavioural Choices, with Applications in Aviation and Energy Manage-
ment Domains

Wen Li (TUD), Understanding Geo-spatial Information on Social Media
Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A
study on epidemic prediction and control

Nicolas Honing (TUD), Peak reduction in decentralised electricity sys-
tems - Markets and prices for flexible planning

Ruud Mattheij (UvT), The Eyes Have It

Mohammad Khelghati (UT), Deep web content monitoring

Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability
Risks for Crisis Organisations

Peter Bloem (UVA), Single Sample Statistics, exercises in learning from
just one example

Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Anal-
ysis, and Enactment

Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classi-
fication and Recommendation

Daphne Karreman (UT), Beyond R2D2: The design of nonverbal inter-
action behavior optimized for robot-specific morphologies

Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and com-
putational inquiry

Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art
& Interaction Design

Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interper-
sonal Style Selection for an Artificial Suspect

Christian Detweiler (TUD), Accounting for Values in Design

Thomas King (TUD), Governing Governance: A Formal Framework for
Analysing Institutional Design and Enactment Governance

Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of
Bilingual Aligned Corpora

Saskia Koldijk (RUN), Context-Aware Support for Stress Self-
Management: From Theory to Practice

Thibault Sellam (UVA), Automatic Assistants for Database Exploration
Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
Jorge Gallego Perez (UT), Robots to Make you Happy

Christina Weber (UL), Real-time foresight - Preparedness for dynamic
innovation networks

48
49

50

SIKS Dissertation Series | 219

Tanja Buttler (TUD), Collecting Lessons Learned

Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-
Theoretic Analysis

Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Opera-
tional Performance Alignment in IT-enabled Service Supply Chains

2017 01
02

03
04
05

06

07
08

09

10
11

12
13

14

15
16

17
18
19
20
21
22
23
24
25

26

Jan-Jaap Oerlemans (UL), Investigating Cybercrime

Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian
Networks using Argumentation

Daniél Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Ap-
proach with Autonomous Products and Reconfigurable Manufacturing
Machines

Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
Mahdieh Shadi (UVA), Collaboration Behavior

Damir Vandic (EUR), Intelligent Information Systems for Web Product
Search

Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in
Health Insurance Data using Outlier Detection and Subgroup Discovery
Dong Nguyen (UT), Text as Social and Cultural Data: A Computational
Perspective on Variation in Text

Robby van Delden (UT), (Steering) Interactive Play Behavior

Florian Kunneman (RUN), Modelling patterns of time and emotion in
Twitter #anticipointment

Sander Leemans (TUE), Robust Process Mining with Guarantees

Gijs Huisman (UT), Social Touch Technology - Extending the reach of
social touch through haptic technology

Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling
Player Traits from Video Game Behavior

Peter Berck (RUN), Memory-Based Text Correction

Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern
Search Engines

Daniel Dimov (UL), Crowdsourced Online Dispute Resolution

Ridho Reinanda (UVA), Entity Associations for Search

Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in
Information Retrieval

Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge
Sharing: The Role of Perceived Benefits, Costs and Visibility

Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Seri-
ous Gaming (A Play on Worlds)

Sara Magliacane (VU), Logics for causal inference under uncertainty
David Graus (UVA), Entities of Interest — Discovery in Digital Traces
Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
Veruska Zamborlini (VU), Knowledge Representation for Clinical Guide-
lines, with applications to Multimorbidity Analysis and Literature Search
Merel Jung (UT), Socially intelligent robots that understand and respond
to human touch

220 | SIKS Dissertation Series

27
28
29

30
31
32
33
34
35
36
37

38
39

40

41

42

43
44

45
46
47
48

Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of
Social Robots: People’s Preferences, Perceptions and Behaviors

John Klein (VU), Architecture Practices for Complex Contexts

Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Perfor-
mance: A Moderated Mediation Model of Social Innovation, and En-
terprise Governance of IT"

Wilma Latuny (UvT), The Power of Facial Expressions

Ben Ruijl (UL), Advances in computational methods for QFT calculations
Thaer Samar (RUN), Access to and Retrievability of Content in Web
Archives

Brigit van Loggem (OU), Towards a Design Rationale for Software Doc-
umentation: A Model of Computer-Mediated Activity

Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
Martine de Vos (VU), Interpreting natural science spreadsheets
Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from
High-throughput Imaging

Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation
Framework that Enables Control over Privacy

Alex Kayal (TUD), Normative Social Applications

Sara Ahmadi (RUN), Exploiting properties of the human auditory system
and compressive sensing methods to increase noise robustness in ASR
Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration
of Human Control in Relation to Emotions, Desires and Social Support
For applications in human-aware support systems

Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of
Mental Processes and a Smart Environment to Provide Support for a
Healthy Lifestyle

Elena Sokolova (RUN), Causal discovery from mixed and missing data
with applications on ADHD datasets

Maaike de Boer (RUN), Semantic Mapping in Video Retrieval

Garm Lucassen (UU), Understanding User Stories - Computational Lin-
guistics in Agile Requirements Engineering

Bas Testerink (UU), Decentralized Runtime Norm Enforcement

Jan Schneider (OU), Sensor-based Learning Support

Jie Yang (TUD), Crowd Knowledge Creation Acceleration

Angel Suarez (OU), Collaborative inquiry-based learning

2018 01
02
03
04

05

Han van der Aa (VUA), Comparing and Aligning Process Representations
Felix Mannhardt (TUE), Multi-perspective Process Mining

Steven Bosems (UT), Causal Models For Well-Being: Knowledge Mod-
eling, Model-Driven Development of Context-Aware Applications, and
Behavior Prediction

Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis
Teams in Data-Centric Engineering Tasks

Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the In-
formation Seeking Process

06
07
08
09
10
11
12
13
14

15
16

17
18
19
20
21
22
23
24

25
26

27

28

29
30

SIKS Dissertation Series | 221

Dan Ionita (UT), Model-Driven Information Security Risk Assessment of
Socio-Technical Systems

Jieting Luo (UU), A formal account of opportunism in multi-agent sys-
tems

Rick Smetsers (RUN), Advances in Model Learning for Software Systems
Xu Xie (TUD), Data Assimilation in Discrete Event Simulations

Julienka Mollee (VUA), Moving forward: supporting physical activity
behavior change through intelligent technology

Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Col-
laborative Networks

Xixi Lu (TUE), Using behavioral context in process mining

Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future

Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor
Filters

Naser Davarzani (UM), Biomarker discovery in heart failure

Jaebok Kim (UT), Automatic recognition of engagement and emotion in
a group of children

Jianpeng Zhang (TUE), On Graph Sample Clustering

Henriette Nakad (UL), De Notaris en Private Rechtspraak

Minh Duc Pham (VUA), Emergent relational schemas for RDF

Manzxia Liu (RUN), Time and Bayesian Networks

Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and
playing scenario-based serious games

Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the
Spread of Behaviours, Perceptions and Emotions in Social Networks
Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analy-
sis

Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-
Autonomous Telepresence Robots

Riste Gligorov (VUA), Serious Games in Audio-Visual Collections

Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motiva-
tional Messages for Behavior Change Technology

Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Soft-
ware Analysis

Christian Willemse (UT), Social Touch Technologies: How they feel and
how they make you feel

Yu Gu (UVT), Emotion Recognition from Mandarin Speech

Wouter Beek, The "K" in "semantic web" stands for "knowledge": scaling
semantics to the web

2019 01

02

03

Rob van Eijk (UL),Web privacy measurement in real-time bidding sys-
tems. A graph-based approach to RTB system classification

Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations
for Assessing Class Size Uncertainty

Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on
Databases: Extracting Event Data from Real Life Data Sources

222 |

SIKS Dissertation Series

04

05
06

07
08

09

10

11

12
13

14

15
16
17
18
19
20
21
22
23
24

25

26
27

28

Ridho Rahmadi (RUN), Finding stable causal structures from clinical
data

Sebastiaan van Zelst (TUE), Process Mining with Streaming Data

Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked
Cultural Heritage Datasets

Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms
Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision
Processes

Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy effi-
ciency in software systems

Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Alloca-
tion and Prediction

Yue Zhao (TUD), Learning Analytics Technology to Understand Learner
Behavioral Engagement in MOOCs

Jacqueline Heinerman (VU), Better Together

Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Con-
tent Generation

Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner
Behavior & Improving Learning Outcomes in Massive Open Online
Courses

Erwin Walraven (TUD), Planning under Uncertainty in Constrained and
Partially Observable Environments

Guangming Li (TUE), Process Mining based on Object-Centric Behav-
ioral Constraint (OCBC) Models

Ali Hurriyetoglu (RUN),Extracting actionable information from micro-
texts

Gerard Wagenaar (UU), Artefacts in Agile Team Communication
Vincent Koeman (TUD), Tools for Developing Cognitive Agents

Chide Groenouwe (UU), Fostering technically augmented human collec-
tive intelligence

Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery
and Design Pattern Detection

Martin van den Berg (VU),Improving IT Decisions with Enterprise Archi-
tecture

Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Ver-
ification

Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing Labeled
Data for Natural Language Processing

Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image de-
scription

Prince Singh (UT), An Integration Platform for Synchromodal Transport
Alessandra Antonaci (OUN), The Gamification Design Process applied to
(Massive) Open Online Courses

Esther Kuindersma (UL), Cleared for take-off: Game-based learning to
prepare airline pilots for critical situations

29
30
31
32
33
34
35
36

37
38

SIKS Dissertation Series | 223

Daniel Formolo (VU), Using virtual agents for simulation and training of
social skills in safety-critical circumstances

Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics

Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intel-
ligence in Games

Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Artifi-
cial Neural Networks

Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network
Features for Classification of Epilepsy and PNES

Lisa Facey-Shaw (OUN), Gamification with digital badges in learning
programming

Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Master
Complex Skills

Jian Fang (TUD), Database Acceleration on FPGAs

Akos Kadar (OUN), Learning visually grounded and multilingual repre-
sentations

2020 01
02
03
04
05
06
07
08
09

10
11

12

13

14

15

16

Armon Toubman (UL), Calculated Moves: Generating Air Combat Be-
haviour

Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Prob-
abilistic Graphical Models

Mostafa Deghani (UvA), Learning with Imperfect Supervision for Lan-
guage Understanding

Maarten van Gompel (RUN), Context as Linguistic Bridges

Yulong Pei (TUE), On local and global structure mining

Preethu Rose Anish (UT), Stimulation Architectural Thinking during Re-
quirements Elicitation - An Approach and Tool Support

Wim van der Vegt (OUN), Towards a software architecture for reusable
game components

Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo
Tree Search

Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality
for Digital Humanities Research

Alifah Syamsiyah (TUE), In-database Preprocessing for Process Mining
Sepideh Mesbah (TUD), Semantic-Enhanced Training Data Augmenta-
tionMethods for Long-Tail Entity Recognition Models

Ward van Breda (VU), Predictive Modeling in E-Mental Health: Explor-
ing Applicability in Personalised Depression Treatment

Marco Virgolin (CWI), Design and Application of Gene-pool Optimal
Mixing Evolutionary Algorithms for Genetic Programming

Mark Raasveldt (CWI/UL), Integrating Analytics with Relational
Databases

Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning for Con-
figurable Assessments in Serious Games

Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling

224 | SIKS Dissertation Series

17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feedback from
Multimodal Experiences

18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Mar-
kets with Uncertainties: Electricity Markets in Renewable Energy Sys-
tems

19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Sys-
tems

20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisations

21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life as it
could be

22 Maryam Masoud Khamis (RUN), Understanding complex systems imple-
mentation through a modeling approach: the case of e-government in
Zanzibar

23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach
to studying writing processes using keystroke logging

24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling, human?
Towards emotionally supportive chatbots

25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining

26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-
Based mixed-Integer opTimization

27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an
educational context

28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice:
Training complex skills with augmented reality

29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference

30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst

31 Gongjin Lan (VU), Learning better — From Baby to Better

32 Jason Rhuggenaath (TUE), Revenue management in online markets:
pricing and online advertising

33 Rick Gilsing (TUE), Supporting service-dominant business model evalu-
ation in the context of business model innovation

34 Anna Bon (MU), Intervention or Collaboration? Redesigning Informa-
tion and Communication Technologies for Development

35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Pro-
duction

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for

02

03

04

05

Social Interaction in Public Space

Rijk Mercuur (TUD), Simulating Human Routines:Integrating Social
Practice Theory in Agent-Based Models

Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with Smart
Devices

Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive
learning analytics for self-regulated learning

Davide Del’Anna (UU), Data-Driven Supervision of Autonomous Sys-
tems

06

07
08

09

10

11

12
13

14

15

16

17

18

19
20
21
22
23

24
25

26

27

28

SIKS Dissertation Series | 225

Daniel Davison (UT), "Hey robot, what do you think?" How children
learn with a social robot

Armel Lefebvre (UU), Research data management for open science
Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Program-
ming on Computational Thinking

Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic
and Non-Verbal Robots to Promote Childrens Collaboration Through
Play

Quinten Meertens (UvA), Misclassification Bias in Statistical Learning
Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic
Vision

Lei Pi (UL), External Knowledge Absorption in Chinese SMEs

Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding
and Facilitating Predictability for Engagement in Learning

Negin Samaeemofrad (UL), Business Incubators: The Impact of Their
Support

Onat Ege Adali (TU/e), Transformation of Value Propositions into Re-
source Re-Configurations through the Business Services Paradigm

Esam A. H. Ghaleb (UM), BIMODAL EMOTION RECOGNITION FROM
AUDIO-VISUAL CUES

Dario Dotti (UM), Human Behavior Understanding from motion and
bodily cues using deep neural networks

Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making
Tools and Formal Systems - Facilitating the Construction of Bayesian Net-
works and Argumentation Frameworks

Roberto Verdecchia (VU), Architectural Technical Debt: Identification
and Management

Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided
Exposure Bias in Recommender Systems

Pedro Thiago Timbé Holanda (CWI), Progressive Indexes

Sihang Qiu (TUD), Conversational Crowdsourcing

Hugo Manuel Proenca (LIACS), Robust rules for prediction and descrip-
tion

Kaijie Zhu (TUE), On Efficient Temporal Subgraph Query Processing
Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Combining
Al and Self-Adaptation to Create Adaptive E-Health Mobile Applications
Benno Kruit (CWI & VUA), Reading the Grid: Extending Knowledge
Bases from Human-readable Tables

Jelte van Waterschoot (UT), Personalized and Personal Conversations:
Designing Agents Who Want to Connect With You

Christoph Selig (UL), Understanding the Heterogeneity of Corporate En-
trepreneurship Programs

2022 1

Judith van Stegeren (UT), Flavor text generation for role-playing video
games

Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Optimisa-
tion: A Deep Learning Journey

226 |

SIKS Dissertation Series

92 NN

10

11

12
13

14

Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away: Rein-
forcement Learning For Personalized Healthcare

Unal Aksu (UU), A Cross-Organizational Process Mining Framework
Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time Over-
Parameterization

Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in Real
Time Bidding

Sambit Praharaj (OU), Measuring the Unmeasurable? Towards Auto-
matic Co-located Collaboration Analytics

Maikel L. van Eck (TU/e), Process Mining for Smart Product Design
Oana Andreea Inel (VUA), Understanding Events: A Diversity-driven
Human-Machine Approach

Felipe Moraes Gomes (TUD), Examining the Effectiveness of Collabora-
tive Search Engines

Mirjam de Haas (UT), Staying engaged in child-robot interaction, a quan-
titative approach to studying preschoolers’ engagement with robots and
tasks during second-language tutoring

Guanyi Chen (UU), Computational Generation of Chinese Noun Phrases
Xander Wilcke (VUA), Machine Learning on Multimodal Knowledge
Graphs: Opportunities, Challenges, and Methods for Learning on Real-
World Heterogeneous and Spatially-Oriented Knowledge

Michiel Overeem (UU), Evolution of Low-Code Platforms

Errata

As with any sufficient large document, errors are bound to show up after printing.

I've decided to update the PDF version, available through my website https://www.
movereem.nl/. This chapter lists the corrections made.

2022-07-29

+ Chapter 5 was wrongly titles “API Management Maturity of LDCPs”.
+ In Figure 4.2 the latest version was wrongly labelled “v0.6”.

https://www.movereem.nl/
https://www.movereem.nl/

	Preface
	I Introduction
	Introduction
	Innovations in Software Systems
	Research Approach
	Relevance and Empirical Evidence
	Dissertation Outline

	II Event Sourced Systems and Evolution
	The Dark Side of Event Sourcing: Managing Data Conversion
	Introduction
	Command Query Responsibility Segregation
	Related Work
	Event Store Upgrade Operations
	Event Store Upgrade Techniques
	Application and Data Upgrade Strategies
	Event Store Upgrade Framework
	Evaluation
	Conclusion and Future Work

	An Empirical Characterization of Event Sourced Systems
	Introduction
	Research Approach: Constructivist Grounded Theory
	Background
	Event Sourcing In Practice
	Event Stores and Event Sourced Systems
	Challenges Faced in Applying Event Sourcing
	Schema Evolution in Event Sourced Systems
	Discussion
	Threats to Validity
	Conclusion
	Interview Protocol

	Data Package: Accompanying Anonymized Transcripts

	III API Management in Software Ecosystems
	API-m-FAMM: a Focus Area Maturity Model for API Management
	Introduction
	Related Work
	Research Approach
	The API Management Focus Area Maturity Model
	Case Studies
	Discussion
	Focus Area Maturity Models
	Threats to Validity
	Conclusion

	Data Packages: Systematic Literature Review and Source Data
	API Management Maturity of LCDPs
	Introduction
	Research Method
	Introduction of the API-m-FAMM
	Case Studies
	Analysis of the Results
	Engineering Research Challenges for LCDPs
	Threats to Validity
	Conclusion

	Data Package: Evaluations of Four LCDPs

	IV Evolution Supporting Architecture
	Generative versus Interpretive MDD: Moving Past `It Depends'
	Introduction
	Context and Related Work
	How SPOs Design and Develop MDEEs
	Quality Characteristics of Model Execution Approaches
	Case Study
	Case Study Reflection
	Discussion
	Conclusion

	Proposing a Framework for Impact Analysis for LDCPs
	Introduction
	Research Approach
	Impact Analysis for Low-Code Development Platforms
	Case Study
	Analysis
	Discussion
	Related Work
	Conclusion

	V Conclusion
	Conclusion
	Answers to the Research Questions
	Reflections
	Future Work

	Bibliography
	Summary
	Nederlandse samenvatting
	Publication List
	Curriculum Vitæ
	SIKS Dissertation Series
	Errata

